» Articles » PMID: 25391882

Relative Importance of Grain Boundaries and Size Effects in Thermal Conductivity of Nanocrystalline Materials

Overview
Journal Sci Rep
Specialty Science
Date 2014 Nov 14
PMID 25391882
Citations 12
Authors
Affiliations
Soon will be listed here.
Abstract

A theoretical model for describing effective thermal conductivity (ETC) of nanocrystalline materials has been proposed, so that the ETC can be easily obtained from its grain size, single crystal thermal conductivity, single crystal phonon mean free path (PMFP), and the Kaptiza thermal resistance. In addition, the relative importance between grain boundaries (GBs) and size effects on the ETC of nanocrystalline diamond at 300 K has been studied. It has been demonstrated that with increasing grain size, both GBs and size effects become weaker, while size effects become stronger on thermal conductivity than GBs effects.

Citing Articles

Thermal diffusivity microscope: Zooming in on anisotropic heat transport.

Lamba N, Beltran-Pitarch B, Yu T, Dawod M, Berner A, Guralnik B Sci Adv. 2025; 11(9):eads6538.

PMID: 40009683 PMC: 11864195. DOI: 10.1126/sciadv.ads6538.


Laser-Induced Nanostructured Si and SiGe Layers for Enhanced Optical and Thermoelectric Performance.

El-Rifai J, Bsaibess E, Christopoulos S, Giovannelli F, Slimani A, Laux-Le Guyon V ACS Omega. 2024; 9(48):47506-47518.

PMID: 39651110 PMC: 11618418. DOI: 10.1021/acsomega.4c06006.


Long-Term Corrosion of Eutectic Gallium, Indium, and Tin (EGaInSn) Interfacing with Diamond.

Handschuh-Wang S, Wang T, Zhang Z, Liu F, Han P, Liu X Materials (Basel). 2024; 17(11).

PMID: 38893946 PMC: 11174033. DOI: 10.3390/ma17112683.


Thermal Conductivity Enhancement of Polymeric Composites Using Hexagonal Boron Nitride: Design Strategies and Challenges.

Meng Y, Yang D, Jiang X, Bando Y, Wang X Nanomaterials (Basel). 2024; 14(4).

PMID: 38392704 PMC: 10893155. DOI: 10.3390/nano14040331.


Manufacturing of Open-Cell Aluminium Foams: Comparing the Sponge Replication Technique and Its Combination with the Freezing Method.

Sutygina A, Betke U, Scheffler M Materials (Basel). 2022; 15(6).

PMID: 35329599 PMC: 8953120. DOI: 10.3390/ma15062147.


References
1.
Ni B, Watanabe T, Phillpot S . Thermal transport in polyethylene and at polyethylene-diamond interfaces investigated using molecular dynamics simulation. J Phys Condens Matter. 2011; 21(8):084219. DOI: 10.1088/0953-8984/21/8/084219. View

2.
Bagri A, Kim S, Ruoff R, Shenoy V . Thermal transport across twin grain boundaries in polycrystalline graphene from nonequilibrium molecular dynamics simulations. Nano Lett. 2011; 11(9):3917-21. DOI: 10.1021/nl202118d. View

3.
Huberman , Overhauser . Electronic Kapitza conductance at a diamond-Pb interface. Phys Rev B Condens Matter. 1994; 50(5):2865-2873. DOI: 10.1103/physrevb.50.2865. View

4.
Han , Chae . Theoretical analysis of the thermal conductivity of diamond in a two-step model. Phys Rev B Condens Matter. 1995; 52(1):27-30. DOI: 10.1103/physrevb.52.27. View

5.
Wang Z, Alaniz J, Jang W, Garay J, Dames C . Thermal conductivity of nanocrystalline silicon: importance of grain size and frequency-dependent mean free paths. Nano Lett. 2011; 11(6):2206-13. DOI: 10.1021/nl1045395. View