» Articles » PMID: 25388295

Molecular Details of a Starch Utilization Pathway in the Human Gut Symbiont Eubacterium Rectale

Overview
Journal Mol Microbiol
Date 2014 Nov 13
PMID 25388295
Citations 48
Authors
Affiliations
Soon will be listed here.
Abstract

Eubacterium rectale is a prominent human gut symbiont yet little is known about the molecular strategies this bacterium has developed to acquire nutrients within the competitive gut ecosystem. Starch is one of the most abundant glycans in the human diet, and E. rectale increases in vivo when the host consumes a diet rich in resistant starch, although it is not a primary degrader of this glycan. Here we present the results of a quantitative proteomics study in which we identify two glycoside hydrolase 13 family enzymes, and three ABC transporter solute-binding proteins that are abundant during growth on starch and, we hypothesize, work together at the cell surface to degrade starch and capture the released maltooligosaccharides. EUR_21100 is a multidomain cell wall anchored amylase that preferentially targets starch polysaccharides, liberating maltotetraose, whereas the membrane-associated maltogenic amylase EUR_01860 breaks down maltooligosaccharides longer than maltotriose. The three solute-binding proteins display a range of glycan-binding specificities that ensure the capture of glucose through maltoheptaose and some α1,6-branched glycans. Taken together, we describe a pathway for starch utilization by E. rectale DSM 17629 that may be conserved among other starch-degrading Clostridium cluster XIVa organisms in the human gut.

Citing Articles

Diabetes and gut microbiome.

Fliegerova K, Mahayri T, Sechovcova H, Mekadim C, Mrazek J, Jarosikova R Front Microbiol. 2025; 15():1451054.

PMID: 39839113 PMC: 11747157. DOI: 10.3389/fmicb.2024.1451054.


Important roles of in the human intestine for resistant starch utilization.

Kim Y, Jung D, Park C Food Sci Biotechnol. 2024; 33(9):2009-2019.

PMID: 39130658 PMC: 11315831. DOI: 10.1007/s10068-024-01621-0.


In Vitro Digestion and Fermentation of Different Ethanol-Fractional Polysaccharides from : Molecular Decomposition and Regulation on Gut Microbiota.

Xu L, Zhu H, Chen P, Li Z, Yang K, Sun P Foods. 2024; 13(11).

PMID: 38890903 PMC: 11172086. DOI: 10.3390/foods13111675.


Prazmowski can degrade and utilize resistant starch via a set of synergistically acting enzymes.

Pickens T, Cockburn D mSphere. 2023; 9(1):e0056623.

PMID: 38131665 PMC: 10826348. DOI: 10.1128/msphere.00566-23.


The Pathogenicity of Modulated by Dietary Fibers-A Possible Missing Link between the Dietary Composition and the Risk of Colorectal Cancer.

Nawab S, Bao Q, Ji L, Luo Q, Fu X, Fan S Microorganisms. 2023; 11(8).

PMID: 37630564 PMC: 10458976. DOI: 10.3390/microorganisms11082004.


References
1.
Walker A, Duncan S, Harmsen H, Holtrop G, Welling G, Flint H . The species composition of the human intestinal microbiota differs between particle-associated and liquid phase communities. Environ Microbiol. 2008; 10(12):3275-83. DOI: 10.1111/j.1462-2920.2008.01717.x. View

2.
Lee H, Kim M, Cho H, Kim J, Kim T, Choi J . Cyclomaltodextrinase, neopullulanase, and maltogenic amylase are nearly indistinguishable from each other. J Biol Chem. 2002; 277(24):21891-7. DOI: 10.1074/jbc.M201623200. View

3.
Oldham M, Chen S, Chen J . Structural basis for substrate specificity in the Escherichia coli maltose transport system. Proc Natl Acad Sci U S A. 2013; 110(45):18132-7. PMC: 3831462. DOI: 10.1073/pnas.1311407110. View

4.
Abbott D, Higgins M, Hyrnuik S, Pluvinage B, Lammerts van Bueren A, Boraston A . The molecular basis of glycogen breakdown and transport in Streptococcus pneumoniae. Mol Microbiol. 2010; 77(1):183-99. PMC: 2911477. DOI: 10.1111/j.1365-2958.2010.07199.x. View

5.
McCoy A, Grosse-Kunstleve R, Adams P, Winn M, Storoni L, Read R . Phaser crystallographic software. J Appl Crystallogr. 2009; 40(Pt 4):658-674. PMC: 2483472. DOI: 10.1107/S0021889807021206. View