» Articles » PMID: 25382186

Photoluminescence Mechanisms of Metallic Zn Nanospheres, Semiconducting ZnO Nanoballoons, and Metal-semiconductor Zn/ZnO Nanospheres

Overview
Journal Sci Rep
Specialty Science
Date 2014 Nov 11
PMID 25382186
Citations 10
Authors
Affiliations
Soon will be listed here.
Abstract

We utilized a thermal radiation method to synthesize semiconducting hollow ZnO nanoballoons and metal-semiconductor concentric solid Zn/ZnO nanospheres from metallic solid Zn nanospheres. The chemical properties, crystalline structures, and photoluminescence mechanisms for the metallic solid Zn nanospheres, semiconducting hollow ZnO nanoballoons, and metal-semiconductor concentric solid Zn/ZnO nanospheres are presented. The PL emissions of the metallic Zn solid nanospheres are mainly dependent on the electron transitions between the Fermi level (E(F)) and the 3d band, while those of the semiconducting hollow ZnO nanoballoons are ascribed to the near band edge (NBE) and deep level electron transitions. The PL emissions of the metal-semiconductor concentric solid Zn/ZnO nanospheres are attributed to the electron transitions across the metal-semiconductor junction, from the E(F) to the valence and 3d bands, and from the interface states to the valence band. All three nanostructures are excellent room-temperature light emitters.

Citing Articles

Comparison of the Degradation Effect of Methylene Blue for ZnO Nanorods Synthesized on Silicon and Indium Tin Oxide Substrates.

Peng G, Chou N, Lin Y, Yang C, Meen T Materials (Basel). 2023; 16(12).

PMID: 37374459 PMC: 10300768. DOI: 10.3390/ma16124275.


Zinc oxide nanostructures enhanced photoluminescence by carbon-black nanoparticles in Moiré heterostructures.

Wang C, Lo A, Cheng M, Chang Y, Shih H, Shieu F Sci Rep. 2023; 13(1):9704.

PMID: 37322054 PMC: 10272155. DOI: 10.1038/s41598-023-36847-1.


Spitzer shaped ZnO nanostructures for enhancement of field electron emission behaviors.

Chikate P, Bankar P, Choudhary R, Ma Y, Patil S, More M RSC Adv. 2022; 8(38):21664-21670.

PMID: 35539914 PMC: 9080942. DOI: 10.1039/c8ra03282c.


Redistribution of native defects and photoconductivity in ZnO under pressure.

Das P, Samanta S, Wang L, Kim J, Vogt T, Sujatha Devi P RSC Adv. 2022; 9(8):4303-4313.

PMID: 35520174 PMC: 9060558. DOI: 10.1039/c8ra10219h.


Surfactant-assisted microwave processing of ZnO particles: a simple way for designing the surface-to-bulk defect ratio and improving photo(electro)catalytic properties.

Markovic S, Stojkovic Simatovic I, Ahmetovic S, Veselinovic L, Stojadinovic S, Rac V RSC Adv. 2022; 9(30):17165-17178.

PMID: 35519876 PMC: 9064477. DOI: 10.1039/c9ra02553g.


References
1.
Hu Y, Lin L, Zhang Y, Wang Z . Replacing a battery by a nanogenerator with 20 V output. Adv Mater. 2011; 24(1):110-4. DOI: 10.1002/adma.201103727. View

2.
Smith A, Nie S . Semiconductor nanocrystals: structure, properties, and band gap engineering. Acc Chem Res. 2009; 43(2):190-200. PMC: 2858563. DOI: 10.1021/ar9001069. View

3.
Devan R, Lin J, Huang Y, Yang C, Wu S, Liou Y . Two-dimensional single-crystalline Zn hexagonal nanoplates: size-controllable synthesis and X-ray diffraction study. Nanoscale. 2011; 3(10):4339-45. DOI: 10.1039/c1nr10694e. View

4.
He C, Lei B, Wang Y, Su C, Fang Y, Kuang D . Sonochemical preparation of hierarchical ZnO hollow spheres for efficient dye-sensitized solar cells. Chemistry. 2010; 16(29):8757-61. DOI: 10.1002/chem.201000264. View

5.
Zhu G, Yang R, Wang S, Wang Z . Flexible high-output nanogenerator based on lateral ZnO nanowire array. Nano Lett. 2010; 10(8):3151-5. DOI: 10.1021/nl101973h. View