» Articles » PMID: 25313041

Sequence Selectivity of Macrolide-induced Translational Attenuation

Overview
Specialty Science
Date 2014 Oct 15
PMID 25313041
Citations 66
Authors
Affiliations
Soon will be listed here.
Abstract

The prevailing "plug-in-the-bottle" model suggests that macrolide antibiotics inhibit translation by binding inside the ribosome tunnel and indiscriminately arresting the elongation of every nascent polypeptide after the synthesis of six to eight amino acids. To test this model, we performed a genome-wide analysis of translation in azithromycin-treated Staphylococcus aureus. In contrast to earlier predictions, we found that the macrolide does not preferentially induce ribosome stalling near the 5' end of mRNAs, but rather acts at specific stalling sites that are scattered throughout the entire coding region. These sites are highly enriched in prolines and charged residues and are strikingly similar to other ligand-independent ribosome stalling motifs. Interestingly, the addition of structurally related macrolides had dramatically different effects on stalling efficiency. Our data suggest that ribosome stalling can occur at a surprisingly large number of low-complexity motifs in a fashion that depends only on a few arrest-inducing residues and the presence of a small molecule inducer.

Citing Articles

Creation of a macrolide antibiotic against non-tuberculous using late-stage boron-mediated aglycon delivery.

Isozaki Y, Makikawa T, Kimura K, Nishihara D, Fujino M, Tanaka Y Sci Adv. 2025; 11(10):eadt2352.

PMID: 40043128 PMC: 11881915. DOI: 10.1126/sciadv.adt2352.


Activity-Based DNA-Encoded Library Screening for Selective Inhibitors of Eukaryotic Translation.

Barhoosh H, Dixit A, Cochrane W, Cavett V, Prince R, Blair B ACS Cent Sci. 2024; 10(10):1960-1968.

PMID: 39463829 PMC: 11503492. DOI: 10.1021/acscentsci.4c01218.


Macrolide resistance through uL4 and uL22 ribosomal mutations in Pseudomonas aeruginosa.

Goltermann L, Laborda P, Irazoqui O, Pogrebnyakov I, Bendixen M, Molin S Nat Commun. 2024; 15(1):8906.

PMID: 39414850 PMC: 11484784. DOI: 10.1038/s41467-024-53329-8.


Macrolones target bacterial ribosomes and DNA gyrase and can evade resistance mechanisms.

Aleksandrova E, Ma C, Klepacki D, Alizadeh F, Vazquez-Laslop N, Liang J Nat Chem Biol. 2024; 20(12):1680-1690.

PMID: 39039256 PMC: 11686707. DOI: 10.1038/s41589-024-01685-3.


Staphylococcal exoribonuclease YhaM destabilizes ribosomes by targeting the mRNA of a hibernation factor.

Liponska A, Lee H, Yap M Nucleic Acids Res. 2024; 52(15):8998-9013.

PMID: 38979572 PMC: 11347170. DOI: 10.1093/nar/gkae596.


References
1.
Pavlov M, Watts R, Tan Z, Cornish V, Ehrenberg M, Forster A . Slow peptide bond formation by proline and other N-alkylamino acids in translation. Proc Natl Acad Sci U S A. 2008; 106(1):50-4. PMC: 2629218. DOI: 10.1073/pnas.0809211106. View

2.
Sothiselvam S, Liu B, Han W, Ramu H, Klepacki D, Atkinson G . Macrolide antibiotics allosterically predispose the ribosome for translation arrest. Proc Natl Acad Sci U S A. 2014; 111(27):9804-9. PMC: 4103360. DOI: 10.1073/pnas.1403586111. View

3.
Nissen P, Hansen J, Ban N, Moore P, Steitz T . The structural basis of ribosome activity in peptide bond synthesis. Science. 2000; 289(5481):920-30. DOI: 10.1126/science.289.5481.920. View

4.
Ude S, Lassak J, Starosta A, Kraxenberger T, Wilson D, Jung K . Translation elongation factor EF-P alleviates ribosome stalling at polyproline stretches. Science. 2012; 339(6115):82-5. DOI: 10.1126/science.1228985. View

5.
Pedersen S . Escherichia coli ribosomes translate in vivo with variable rate. EMBO J. 1984; 3(12):2895-8. PMC: 557784. DOI: 10.1002/j.1460-2075.1984.tb02227.x. View