» Articles » PMID: 25302059

Tunable Surface Plasmon Resonance Frequencies of Monodisperse Indium Tin Oxide Nanoparticles by Controlling Composition, Size, and Morphology

Overview
Publisher Springer
Specialty Biotechnology
Date 2014 Oct 11
PMID 25302059
Citations 5
Authors
Affiliations
Soon will be listed here.
Abstract

Monodisperse indium tin oxide nanoparticles (ITO NPs) with high crystallinity have been synthesized by the rapid thermal injection method and the seed-mediated growth method. We demonstrate that the surface plasmon resonance (SPR) frequencies of ITO NPs can be manipulated from 1,600 to 1,993 nm in near-infrared band by controlling the composition, size, and morphology. The doping Sn concentration in ITO NPs could be controlled via changing the %Sn in the initial feed from 0% to 30%. The shortest SPR wavelength at 1,600 nm with 10% Sn doping concentration indicates highest free electron carrier concentration in ITO NPs, which has direct relationship with doping Sn(4+) ions. Furthermore, we demonstrate that the SPR peaks can also be tuned by the size of ITO NPs in the case of uniform doping. Besides, compared with the ITO NPs, single crystalline ITO with nanoflower morphology synthesized through the one-pot method exhibit SPR absorption peak features of red-shifting and broadening.

Citing Articles

Visualizing electroluminescence process in light-emitting electrochemical cells.

Yasuji K, Sakanoue T, Yonekawa F, Kanemoto K Nat Commun. 2023; 14(1):992.

PMID: 36859421 PMC: 9977921. DOI: 10.1038/s41467-023-36472-6.


Fabrication of Plasmonic Indium Tin Oxide Nanoparticles by Means of a Gas Aggregation Cluster Source.

Shelemin A, Krtous Z, Baloukas B, Zabeida O, Klemberg-Sapieha J, Martinu L ACS Omega. 2023; 8(6):6052-6058.

PMID: 36816637 PMC: 9933235. DOI: 10.1021/acsomega.2c08070.


Controlling the oxidation state of molybdenum oxide nanoparticles prepared by ionic liquid/metal sputtering to enhance plasmon-induced charge separation.

Akiyoshi K, Kameyama T, Yamamoto T, Kuwabata S, Tatsuma T, Torimoto T RSC Adv. 2022; 10(48):28516-28522.

PMID: 35520071 PMC: 9055849. DOI: 10.1039/d0ra05165a.


Biosensing Applications Using Nanostructure-Based Localized Surface Plasmon Resonance Sensors.

Kim D, Park J, Jung S, Yeom J, Yoo S Sensors (Basel). 2021; 21(9).

PMID: 34064431 PMC: 8125509. DOI: 10.3390/s21093191.


Laser sintering of gravure printed indium tin oxide films on polyethylene terephthalate for flexible electronics.

Serkov A, Snelling H, Heusing S, Amaral T Sci Rep. 2019; 9(1):1773.

PMID: 30741970 PMC: 6370795. DOI: 10.1038/s41598-018-38043-y.

References
1.
Garcia G, Buonsanti R, Runnerstrom E, Mendelsberg R, LLordes A, Anders A . Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals. Nano Lett. 2011; 11(10):4415-20. DOI: 10.1021/nl202597n. View

2.
Jiwei Q, Yudong L, Ming Y, Qiang W, Zongqiang C, Wudeng W . Large-area high-performance SERS substrates with deep controllable sub-10-nm gap structure fabricated by depositing Au film on the cicada wing. Nanoscale Res Lett. 2013; 8(1):437. PMC: 3816588. DOI: 10.1186/1556-276X-8-437. View

3.
El-Sayed I, Huang X, El-Sayed M . Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. Nano Lett. 2005; 5(5):829-34. DOI: 10.1021/nl050074e. View

4.
Zhou N, Li D, Yang D . Morphology and composition controlled synthesis of flower-like silver nanostructures. Nanoscale Res Lett. 2014; 9(1):302. PMC: 4070649. DOI: 10.1186/1556-276X-9-302. View

5.
Narayanaswamy A, Xu H, Pradhan N, Kim M, Peng X . Formation of nearly monodisperse In2O3 nanodots and oriented-attached nanoflowers: hydrolysis and alcoholysis vs pyrolysis. J Am Chem Soc. 2006; 128(31):10310-9. DOI: 10.1021/ja0627601. View