» Articles » PMID: 25301680

A New Way to Produce Hyperketonemia: Use of Ketone Ester in a Case of Alzheimer's Disease

Overview
Specialties Neurology
Psychiatry
Date 2014 Oct 11
PMID 25301680
Citations 81
Authors
Affiliations
Soon will be listed here.
Abstract

Background: Providing ketone bodies to the brain can bypass metabolic blocks to glucose utilization and improve function in energy-starved neurons. For this, plasma ketones must be elevated well above the ≤ 0.2 mM default concentrations normally prevalent. Limitations of dietary methods currently used to produce therapeutic hyperketonemia have stimulated the search for better approaches.

Method: Described herein is a new way to produce therapeutic hyperketonemia, entailing prolonged oral administration of a potent ketogenic agent--ketone monoester (KME)--to a patient with Alzheimer's disease dementia and a pretreatment Mini-Mental State Examination score of 12.

Results: The patient improved markedly in mood, affect, self-care, and cognitive and daily activity performance. The KME was well tolerated throughout the 20-month treatment period. Cognitive performance tracked plasma β-hydroxybutyrate concentrations, with noticeable improvements in conversation and interaction at the higher levels, compared with predose levels.

Conclusion: KME-induced hyperketonemia is robust, convenient, and safe, and the ester can be taken as an oral supplement without changing the habitual diet.

Citing Articles

β-hydroxybutyrate is a metabolic regulator of proteostasis in the aged and Alzheimer disease brain.

Madhavan S, Diaz S, Peralta S, Nomura M, King C, Ceyhan K Cell Chem Biol. 2024; 32(1):174-191.e8.

PMID: 39626664 PMC: 11741930. DOI: 10.1016/j.chembiol.2024.11.001.


Ketogenic Diet: A Review of Composition Diversity, Mechanism of Action and Clinical Application.

Malinowska D, Zendzian-Piotrowska M J Nutr Metab. 2024; 2024:6666171.

PMID: 39463845 PMC: 11511599. DOI: 10.1155/2024/6666171.


Medium-Chain Triglycerides (MCTs) for the Symptomatic Treatment of Dementia-Related Diseases: A Systematic Review.

Meer N, Fischer T J Nutr Metab. 2024; 2024:9672969.

PMID: 38715705 PMC: 11074881. DOI: 10.1155/2024/9672969.


Effect of sodium-glucose cotransporter 2 inhibitors on serum low-density lipoprotein cholesterol in Japanese patients with type 2 diabetes mellitus.

Imada T, Katakami N, Watanabe H, Nishina S, Sasaki S, Takahara M J Diabetes Investig. 2024; 15(7):843-850.

PMID: 38459768 PMC: 11215694. DOI: 10.1111/jdi.14179.


Ketosis prevents abdominal aortic aneurysm rupture through C-C chemokine receptor type 2 downregulation and enhanced extracellular matrix balance.

Sastriques-Dunlop S, Elizondo-Benedetto S, Arif B, Meade R, Zaghloul M, Luehmann H Sci Rep. 2024; 14(1):1438.

PMID: 38228786 PMC: 10791699. DOI: 10.1038/s41598-024-51996-7.


References
1.
LECOCQ F, MCPHAUL Jr J . THE EFFECTS OF STARVATION, HIGH FAT DIETS, AND KETONE INFUSIONS ON URIC ACID BALANCE. Metabolism. 1965; 14:186-97. DOI: 10.1016/s0026-0495(65)80039-7. View

2.
Clarke K, Tchabanenko K, Pawlosky R, Carter E, Knight N, Murray A . Oral 28-day and developmental toxicity studies of (R)-3-hydroxybutyl (R)-3-hydroxybutyrate. Regul Toxicol Pharmacol. 2012; 63(2):196-208. PMC: 3809901. DOI: 10.1016/j.yrtph.2012.04.001. View

3.
Kim Y, Lee F, Choi W, Lee S, Youn J . Insulin regulation of skeletal muscle PDK4 mRNA expression is impaired in acute insulin-resistant states. Diabetes. 2006; 55(8):2311-7. DOI: 10.2337/db05-1606. View

4.
Kerndt P, Naughton J, Driscoll C, Loxterkamp D . Fasting: the history, pathophysiology and complications. West J Med. 1982; 137(5):379-99. PMC: 1274154. View

5.
Vining E . Clinical efficacy of the ketogenic diet. Epilepsy Res. 1999; 37(3):181-90. DOI: 10.1016/s0920-1211(99)00070-4. View