» Articles » PMID: 25294803

Single Amino Acid Substitution in Homogentisate 1,2-dioxygenase is Responsible for Pigmentation in a Subset of Burkholderia Cepacia Complex Isolates

Overview
Date 2014 Oct 9
PMID 25294803
Citations 11
Authors
Affiliations
Soon will be listed here.
Abstract

The Burkholderia cepacia complex (Bcc) is a group of Gram-negative bacilli that are ubiquitous in the environment and have emerged over the past 30 years as opportunistic pathogens in immunocompromised populations, specifically individuals with cystic fibrosis (CF) and chronic granulomatous disease. This complex of at least 18 distinct species is phenotypically and genetically diverse. One phenotype observed in a subset of Burkholderia cenocepacia (a prominent Bcc pathogen) isolates is the ability to produce a melanin-like pigment. Melanins have antioxidant properties and have been shown to act as virulence factors allowing pathogens to resist killing by the host immune system. The melanin-like pigment expressed by B. cenocepacia is produced through tyrosine catabolism, specifically through the autoxidation and polymerization of homogentisate. Burkholderia cenocepacia J2315 is a CF clinical isolate that displays a pigmented phenotype when grown under normal laboratory conditions. We examined the amino acid sequences of critical enzymes in the melanin synthesis pathway in pigmented and non-pigmented Bcc isolates, and found that an amino acid substitution of glycine for arginine at amino acid 378 in homogentisate 1,2-dioxygenase correlated with pigment production; we identify this as one mechanism for expression of pigment in Bcc isolates.

Citing Articles

Mutation of , encoding homogentisate 1,2-dioxygenase, is responsible for pyomelanin production but does not impact the virulence of in a chronic granulomatous disease mouse lung infection.

Moustafa D, Wu L, Ivey M, Fankhauser S, Goldberg J Microbiol Spectr. 2024; 12(7):e0041024.

PMID: 38809005 PMC: 11218447. DOI: 10.1128/spectrum.00410-24.


Bioproduction and optimization of newly characterized melanin pigment from Streptomyces djakartensis NSS-3 with its anticancer, antimicrobial, and radioprotective properties.

El-Zawawy N, Kenawy E, Ahmed S, El-Sapagh S Microb Cell Fact. 2024; 23(1):23.

PMID: 38229042 PMC: 10792909. DOI: 10.1186/s12934-023-02276-y.


The Small RNA NcS25 Regulates Biological Amine-Transporting Outer Membrane Porin BCAL3473 in Burkholderia cenocepacia.

Sass A, Coenye T mSphere. 2023; 8(2):e0008323.

PMID: 36971554 PMC: 10117139. DOI: 10.1128/msphere.00083-23.


Transcriptome analysis of Auricularia fibrillifera fruit-body responses to drought stress and rehydration.

Wang Y, Yang Z, Shi L, Yang R, Guo H, Zhang S BMC Genomics. 2022; 23(1):58.

PMID: 35033026 PMC: 8760723. DOI: 10.1186/s12864-021-08284-9.


Metabolomic profiling of Burkholderia cenocepacia in synthetic cystic fibrosis sputum medium reveals nutrient environment-specific production of virulence factors.

Jaiyesimi O, McAvoy A, Fogg D, Garg N Sci Rep. 2021; 11(1):21419.

PMID: 34725378 PMC: 8560942. DOI: 10.1038/s41598-021-00421-4.


References
1.
Schmaler-Ripcke J, Sugareva V, Gebhardt P, Winkler R, Kniemeyer O, Heinekamp T . Production of pyomelanin, a second type of melanin, via the tyrosine degradation pathway in Aspergillus fumigatus. Appl Environ Microbiol. 2008; 75(2):493-503. PMC: 2620705. DOI: 10.1128/AEM.02077-08. View

2.
Greenberg D, Marshall-Batty K, Brinster L, Zarember K, Shaw P, Mellbye B . Antisense phosphorodiamidate morpholino oligomers targeted to an essential gene inhibit Burkholderia cepacia complex. J Infect Dis. 2010; 201(12):1822-30. PMC: 2872041. DOI: 10.1086/652807. View

3.
Varga J, Losada L, Zelazny A, Brinkac L, Harkins D, Radune D . Draft genome sequence determination for cystic fibrosis and chronic granulomatous disease Burkholderia multivorans isolates. J Bacteriol. 2012; 194(22):6356-7. PMC: 3486389. DOI: 10.1128/JB.01306-12. View

4.
Wang Z, Lin B, Mostaghim A, Rubin R, Glaser E, Mittraparp-Arthorn P . Vibrio campbellii hmgA-mediated pyomelanization impairs quorum sensing, virulence, and cellular fitness. Front Microbiol. 2013; 4:379. PMC: 3858670. DOI: 10.3389/fmicb.2013.00379. View

5.
Rodriguez J, Timm D, Titus G, Beltran-Valero de Bernabe D, Criado O, Mueller H . Structural and functional analysis of mutations in alkaptonuria. Hum Mol Genet. 2000; 9(15):2341-50. DOI: 10.1093/oxfordjournals.hmg.a018927. View