» Articles » PMID: 25281277

Treatment of Low HDL-C Subjects with the CETP Modulator Dalcetrapib Increases Plasma Campesterol Only in Those Without ABCA1 And/or ApoA1 Mutations

Overview
Journal Lipids
Specialty Biochemistry
Date 2014 Oct 5
PMID 25281277
Citations 4
Authors
Affiliations
Soon will be listed here.
Abstract

We investigated the effect of dalcetrapib treatment on phytosterol levels in patients with familial combined hyperlipidemia (FCH) or familial hypoalphalipoproteinemia (FHA) due to mutations in apolipoprotein A1 (ApoA1) or ATP-binding cassette transporter A1 (ABCA1). Patients (n = 40) with FCH or FHA received dalcetrapib 600 mg or placebo in this 4-week, double-blind, crossover study. Lipids, apolipoproteins, cholesteryl ester transfer protein (CETP) activity and mass, and phytosterols were assessed. Dalcetrapib increased high-density lipoprotein cholesterol (HDL-C) and ApoA1 levels to a similar extent in FHA (+22.8, +13.9%) and FCH (+18.4, +12.1%), both p < 0.001 vs. placebo. Changes in CETP activity and mass were comparable for FHA (-31.5, +120.9%) and FCH (-26.6, +111.9%), both p < 0.0001 vs. placebo. Campesterol and lathosterol were unchanged in FHA (+3.8, +3.0%), but only campesterol was markedly increased in FCH (+25.0%, p < 0.0001 vs. placebo). Campesterol increased with dalcetrapib treatment in FCH but not in FHA, despite comparable HDL-C and ApoA1 increases, suggesting that ApoA1 and/or ABCA1 is essential for HDL lipidation by enterocytes in humans.

Citing Articles

The Plasma Distribution of Non-cholesterol Sterol Precursors and Products of Cholesterol Synthesis and Phytosterols Depend on HDL Concentration.

Nunes V, da Silva E, Ferreira G, Assis S, Cazita P, Nakandakare E Front Nutr. 2022; 9:723555.

PMID: 35299760 PMC: 8921769. DOI: 10.3389/fnut.2022.723555.


Microarray analysis of long non-coding RNA expression profiles in low high-density lipoprotein cholesterol disease.

Wang X, Guo S, Hu Y, Guo H, Zhang X, Yan Y Lipids Health Dis. 2020; 19(1):175.

PMID: 32723322 PMC: 7388226. DOI: 10.1186/s12944-020-01348-x.


Associations of the APOC3 rs5128 polymorphism with plasma APOC3 and lipid levels: a meta-analysis.

Song Y, Zhu L, Richa M, Li P, Yang Y, Li S Lipids Health Dis. 2015; 14:32.

PMID: 25928461 PMC: 4457007. DOI: 10.1186/s12944-015-0027-0.


Will Lipidation of ApoA1 through Interaction with ABCA1 at the Intestinal Level Affect the Protective Functions of HDL?.

Niesor E Biology (Basel). 2015; 4(1):17-38.

PMID: 25569858 PMC: 4381214. DOI: 10.3390/biology4010017.

References
1.
Gylling H, Hallikainen M, Kolehmainen M, Toppinen L, Pihlajamaki J, Mykkanen H . Cholesterol synthesis prevails over absorption in metabolic syndrome. Transl Res. 2007; 149(6):310-6. DOI: 10.1016/j.trsl.2006.11.012. View

2.
Kruit J, Groen A, van Berkel T, Kuipers F . Emerging roles of the intestine in control of cholesterol metabolism. World J Gastroenterol. 2006; 12(40):6429-39. PMC: 4100631. DOI: 10.3748/wjg.v12.i40.6429. View

3.
Maugeais C, Perez A, von der Mark E, Magg C, Pflieger P, Niesor E . Evidence for a role of CETP in HDL remodeling and cholesterol efflux: role of cysteine 13 of CETP. Biochim Biophys Acta. 2013; 1831(11):1644-50. DOI: 10.1016/j.bbalip.2013.07.007. View

4.
Brunham L, Kruit J, Pape T, Parks J, Kuipers F, Hayden M . Tissue-specific induction of intestinal ABCA1 expression with a liver X receptor agonist raises plasma HDL cholesterol levels. Circ Res. 2006; 99(7):672-4. DOI: 10.1161/01.RES.0000244014.19589.8e. View

5.
Leichtle A, Helmschrodt C, Ceglarek U, Shai I, Henkin Y, Schwarzfuchs D . Effects of a 2-y dietary weight-loss intervention on cholesterol metabolism in moderately obese men. Am J Clin Nutr. 2011; 94(5):1189-95. DOI: 10.3945/ajcn.111.018119. View