Molecular Mechanisms of Memory in Imprinting
Overview
Psychology
Social Sciences
Authors
Affiliations
Converging evidence implicates the intermediate and medial mesopallium (IMM) of the domestic chick forebrain in memory for a visual imprinting stimulus. During and after imprinting training, neuronal responsiveness in the IMM to the familiar stimulus exhibits a distinct temporal profile, suggesting several memory phases. We discuss the temporal progression of learning-related biochemical changes in the IMM, relative to the start of this electrophysiological profile. c-fos gene expression increases <15 min after training onset, followed by a learning-related increase in Fos expression, in neurons immunopositive for GABA, taurine and parvalbumin (not calbindin). Approximately simultaneously or shortly after, there are increases in phosphorylation level of glutamate (AMPA) receptor subunits and in releasable neurotransmitter pools of GABA and taurine. Later, the mean area of spine synapse post-synaptic densities, N-methyl-D-aspartate receptor number and phosphorylation level of further synaptic proteins are elevated. After ∼ 15 h, learning-related changes in amounts of several synaptic proteins are observed. The results indicate progression from transient/labile to trophic synaptic modification, culminating in stable recognition memory.
Src-NADH dehydrogenase subunit 2 complex and recognition memory of imprinting in domestic chicks.
Chitadze L, Meparishvili M, Lagani V, Khuchua Z, McCabe B, Solomonia R PLoS One. 2024; 19(1):e0297166.
PMID: 38285689 PMC: 10824410. DOI: 10.1371/journal.pone.0297166.
The Dynamic Relationship between the Glymphatic System, Aging, Memory, and Sleep.
Voumvourakis K, Sideri E, Papadimitropoulos G, Tsantzali I, Hewlett P, Kitsos D Biomedicines. 2023; 11(8).
PMID: 37626589 PMC: 10452251. DOI: 10.3390/biomedicines11082092.
Interplay Between the Immune and Nervous Cognitive Systems in Homeostasis and in Malaria.
de Sousa L, Rosa-Goncalves P, Ribeiro-Gomes F, Daniel-Ribeiro C Int J Biol Sci. 2023; 19(11):3383-3394.
PMID: 37496995 PMC: 10367562. DOI: 10.7150/ijbs.82556.
Zheng R, Zhang X, Gao Y, Gao D, Gong W, Zhang C Brain Behav. 2023; 13(6):e3004.
PMID: 37118929 PMC: 10275548. DOI: 10.1002/brb3.3004.
Serizawa S, Aoki N, Mori C, Fujita T, Yamaguchi S, Matsushima T Front Physiol. 2023; 14:1084816.
PMID: 36875018 PMC: 9978523. DOI: 10.3389/fphys.2023.1084816.