» Articles » PMID: 25278839

A Synaptic Mechanism for Network Synchrony

Overview
Specialty Cell Biology
Date 2014 Oct 4
PMID 25278839
Citations 6
Authors
Affiliations
Soon will be listed here.
Abstract

Within neural networks, synchronization of activity is dependent upon the synaptic connectivity of embedded microcircuits and the intrinsic membrane properties of their constituent neurons. Synaptic integration, dendritic Ca(2+) signaling, and non-linear interactions are crucial cellular attributes that dictate single neuron computation, but their roles promoting synchrony and the generation of network oscillations are not well understood, especially within the context of a defined behavior. In this regard, the lamprey spinal central pattern generator (CPG) stands out as a well-characterized, conserved vertebrate model of a neural network (Smith et al., 2013a), which produces synchronized oscillations in which neural elements from the systems to cellular level that control rhythmic locomotion have been determined. We review the current evidence for the synaptic basis of oscillation generation with a particular emphasis on the linkage between synaptic communication and its cellular coupling to membrane processes that control oscillatory behavior of neurons within the locomotor network. We seek to relate dendritic function found in many vertebrate systems to the accessible lamprey central nervous system in which the relationship between neural network activity and behavior is well understood. This enables us to address how Ca(2+) signaling in spinal neuron dendrites orchestrate oscillations that drive network behavior.

Citing Articles

Investigations into hydrogen sulfide-induced suppression of neuronal activity in vivo and calcium dysregulation in vitro.

Kim D, Pessah I, Santana C, Purnell B, Li R, Buchanan G Toxicol Sci. 2023; .

PMID: 36882182 PMC: 10109532. DOI: 10.1093/toxsci/kfad022.


Shed CNTNAP2 ectodomain is detectable in CSF and regulates Ca homeostasis and network synchrony via PMCA2/ATP2B2.

Martin-de-Saavedra M, Dos Santos M, Culotta L, Varea O, Spielman B, Parnell E Neuron. 2021; 110(4):627-643.e9.

PMID: 34921780 PMC: 8857041. DOI: 10.1016/j.neuron.2021.11.025.


A single motor neuron determines the rhythm of early motor behavior in .

Akahoshi T, Utsumi M, Oonuma K, Murakami M, Horie T, Kusakabe T Sci Adv. 2021; 7(50):eabl6053.

PMID: 34890229 PMC: 8664258. DOI: 10.1126/sciadv.abl6053.


Dependence of Generation of Hippocampal CA1 Slow Oscillations on Electrical Synapses.

Xu Y, Shen F, Liu Y, Wang L, Wang Y, Wang Z Neurosci Bull. 2019; 36(1):39-48.

PMID: 31468346 PMC: 6940419. DOI: 10.1007/s12264-019-00419-z.


Genomic discovery of ion channel genes in the central nervous system of the lamprey Petromyzon marinus.

Northcutt A, Hough R, Frese A, McClellan A, Schulz D Mar Genomics. 2019; 46:29-40.

PMID: 30878501 PMC: 6579644. DOI: 10.1016/j.margen.2019.03.003.


References
1.
Gerachshenko T, Schwartz E, Bleckert A, Photowala H, Seymour A, Alford S . Presynaptic G-protein-coupled receptors dynamically modify vesicle fusion, synaptic cleft glutamate concentrations, and motor behavior. J Neurosci. 2009; 29(33):10221-33. PMC: 2756137. DOI: 10.1523/JNEUROSCI.1404-09.2009. View

2.
Westenbroek R, Hell J, Warner C, DUBEL S, Snutch T, Catterall W . Biochemical properties and subcellular distribution of an N-type calcium channel alpha 1 subunit. Neuron. 1992; 9(6):1099-115. DOI: 10.1016/0896-6273(92)90069-p. View

3.
Kyriakatos A, Mahmood R, Ausborn J, Porres C, Buschges A, El Manira A . Initiation of locomotion in adult zebrafish. J Neurosci. 2011; 31(23):8422-31. PMC: 6623330. DOI: 10.1523/JNEUROSCI.1012-11.2011. View

4.
Hausser M, Mel B . Dendrites: bug or feature?. Curr Opin Neurobiol. 2003; 13(3):372-83. DOI: 10.1016/s0959-4388(03)00075-8. View

5.
Deister C, Teagarden M, Wilson C, Paladini C . An intrinsic neuronal oscillator underlies dopaminergic neuron bursting. J Neurosci. 2009; 29(50):15888-97. PMC: 2824818. DOI: 10.1523/JNEUROSCI.4053-09.2009. View