» Articles » PMID: 25257055

White Matter Consequences of Retinal Receptor and Ganglion Cell Damage

Overview
Specialty Ophthalmology
Date 2014 Sep 27
PMID 25257055
Citations 39
Authors
Affiliations
Soon will be listed here.
Abstract

Purpose: Patients with Leber hereditary optic neuropathy (LHON) and cone-rod dystrophy (CRD) have central vision loss; but CRD damages the retinal photoreceptor layer, and LHON damages the retinal ganglion cell (RGC) layer. Using diffusion MRI, we measured how these two types of retinal damage affect the optic tract (ganglion cell axons) and optic radiation (geniculo-striate axons).

Methods: Adult onset CRD (n = 5), LHON (n = 6), and healthy controls (n = 14) participated in the study. We used probabilistic fiber tractography to identify the optic tract and the optic radiation. We compared axial and radial diffusivity at many positions along the optic tract and the optic radiation.

Results: In both types of patients, diffusion measures within the optic tract and the optic radiation differ from controls. The optic tract change is principally a decrease in axial diffusivity; the optic radiation change is principally an increase in radial diffusivity.

Conclusions: Both photoreceptor layer (CRD) and retinal ganglion cell (LHON) retinal disease causes substantial change in the visual white matter. These changes can be measured using diffusion MRI. The diffusion changes measured in the optic tract and the optic radiation differ, suggesting that they are caused by different biological mechanisms.

Citing Articles

Visual Tract Integrity Before and After Gene Therapy in Congenital Achromatopsia.

Abramovitch H, Bick A, Guy N, Elul D, Mckyton A, Banin E Transl Vis Sci Technol. 2025; 14(2):9.

PMID: 39908132 PMC: 11804893. DOI: 10.1167/tvst.14.2.9.


Tractometry of Human Visual White Matter Pathways in Health and Disease.

Takemura H, Kruper J, Miyata T, Rokem A Magn Reson Med Sci. 2024; 23(3):316-340.

PMID: 38866532 PMC: 11234945. DOI: 10.2463/mrms.rev.2024-0007.


brainlife.io: a decentralized and open-source cloud platform to support neuroscience research.

Hayashi S, Caron B, Solon Heinsfeld A, Vinci-Booher S, McPherson B, Bullock D Nat Methods. 2024; 21(5):809-813.

PMID: 38605111 PMC: 11093740. DOI: 10.1038/s41592-024-02237-2.


Accelerated Brain Atrophy, Microstructural Decline and Connectopathy in Age-Related Macular Degeneration.

Stout J, Mahzarnia A, Dai R, Anderson R, Cousins S, Zhuang J Biomedicines. 2024; 12(1).

PMID: 38255252 PMC: 10813528. DOI: 10.3390/biomedicines12010147.


Methods of diffusion MRI tractography for localization of the anterior optic pathway: A systematic review of validated methods.

Carrozzi A, Gramegna L, Sighinolfi G, Zoli M, Mazzatenta D, Testa C Neuroimage Clin. 2023; 39:103494.

PMID: 37651845 PMC: 10477810. DOI: 10.1016/j.nicl.2023.103494.


References
1.
Nucci C, Mancino R, Martucci A, Bolacchi F, Manenti G, Cedrone C . 3-T Diffusion tensor imaging of the optic nerve in subjects with glaucoma: correlation with GDx-VCC, HRT-III and Stratus optical coherence tomography findings. Br J Ophthalmol. 2012; 96(7):976-80. DOI: 10.1136/bjophthalmol-2011-301280. View

2.
Friston K, Ashburner J . Generative and recognition models for neuroanatomy. Neuroimage. 2004; 23(1):21-4. DOI: 10.1016/j.neuroimage.2004.04.021. View

3.
Oishi A, Otani A, Sasahara M, Kurimoto M, Nakamura H, Kojima H . Retinal nerve fiber layer thickness in patients with retinitis pigmentosa. Eye (Lond). 2008; 23(3):561-6. DOI: 10.1038/eye.2008.63. View

4.
Mezer A, Yeatman J, Stikov N, Kay K, Cho N, Dougherty R . Quantifying the local tissue volume and composition in individual brains with magnetic resonance imaging. Nat Med. 2013; 19(12):1667-72. PMC: 3855886. DOI: 10.1038/nm.3390. View

5.
Hartong D, Berson E, Dryja T . Retinitis pigmentosa. Lancet. 2006; 368(9549):1795-809. DOI: 10.1016/S0140-6736(06)69740-7. View