» Articles » PMID: 25228366

Emerging Antiviral Resistant Strains of Influenza A and the Potential Therapeutic Targets Within the Viral Ribonucleoprotein (vRNP) Complex

Overview
Journal Virol J
Publisher Biomed Central
Specialty Microbiology
Date 2014 Sep 18
PMID 25228366
Citations 9
Authors
Affiliations
Soon will be listed here.
Abstract

Emerging antiviral resistant strains of influenza A virus are greatly limiting the therapies available to stop aggressive infections. Genome changes that confer resistance to the two classes of approved antivirals have been identified in circulating influenza A viruses. It is only a matter of time before the currently approved influenza A antivirals are rendered ineffective, emphasizing the need for additional influenza antiviral therapies. This review highlights the current state of antiviral resistance in circulating and highly pathogenic influenza A viruses and explores potential antiviral targets within the proteins of the influenza A virus ribonucleoprotein (vRNP) complex, drawing attention to the viral protein activities and interactions that play an indispensable role in the influenza life cycle. Investigation of small molecule inhibition, accelerated by the use of crystal structures of vRNP proteins, has provided important information about viral protein domains and interactions, and has revealed many promising antiviral drug candidates discussed in this review.

Citing Articles

Evaluation of the Antiviral Activity of Tabamide A and Its Structural Derivatives against Influenza Virus.

Shin S, Lee J, Kim J, Im W, Damodar K, Woo H Int J Mol Sci. 2023; 24(24).

PMID: 38139128 PMC: 10744247. DOI: 10.3390/ijms242417296.


Conserved Targets to Prevent Emerging Coronaviruses.

Gonzalez Lomeli F, Elmaraghy N, Castro A, Osuna Guerrero C, Newcomb L Viruses. 2022; 14(3).

PMID: 35336969 PMC: 8949862. DOI: 10.3390/v14030563.


Development and Effects of Influenza Antiviral Drugs.

Yin H, Jiang N, Shi W, Chi X, Liu S, Chen J Molecules. 2021; 26(4).

PMID: 33557246 PMC: 7913928. DOI: 10.3390/molecules26040810.


Influenza A Virus Utilizes Low-Affinity, High-Avidity Interactions with the Nuclear Import Machinery To Ensure Infection and Immune Evasion.

Tome-Amat J, Ramos I, Amanor F, Fernandez-Sesma A, Ashour J J Virol. 2018; 93(1).

PMID: 30305352 PMC: 6288324. DOI: 10.1128/JVI.01046-18.


Influenza A Virus Nucleoprotein: A Highly Conserved Multi-Functional Viral Protein as a Hot Antiviral Drug Target.

Hu Y, Sneyd H, Dekant R, Wang J Curr Top Med Chem. 2017; 17(20):2271-2285.

PMID: 28240183 PMC: 5967877. DOI: 10.2174/1568026617666170224122508.


References
1.
Ng A, Chan W, Choi S, Lam M, Lau K, Chan P . Influenza polymerase activity correlates with the strength of interaction between nucleoprotein and PB2 through the host-specific residue K/E627. PLoS One. 2012; 7(5):e36415. PMC: 3343083. DOI: 10.1371/journal.pone.0036415. View

2.
Fukuoka M, Minakuchi M, Kawaguchi A, Nagata K, Kamatari Y, Kuwata K . Structure-based discovery of anti-influenza virus A compounds among medicines. Biochim Biophys Acta. 2011; 1820(2):90-5. DOI: 10.1016/j.bbagen.2011.11.003. View

3.
Kiso M, Mitamura K, Sakai-Tagawa Y, Shiraishi K, Kawakami C, Kimura K . Resistant influenza A viruses in children treated with oseltamivir: descriptive study. Lancet. 2004; 364(9436):759-65. DOI: 10.1016/S0140-6736(04)16934-1. View

4.
Perez D, Donis R . Functional analysis of PA binding by influenza a virus PB1: effects on polymerase activity and viral infectivity. J Virol. 2001; 75(17):8127-36. PMC: 115057. DOI: 10.1128/jvi.75.17.8127-8136.2001. View

5.
Jing X, Ma C, Ohigashi Y, Oliveira F, Jardetzky T, Pinto L . Functional studies indicate amantadine binds to the pore of the influenza A virus M2 proton-selective ion channel. Proc Natl Acad Sci U S A. 2008; 105(31):10967-72. PMC: 2492755. DOI: 10.1073/pnas.0804958105. View