» Articles » PMID: 25218309

Increased Neurotrophic Factor Levels in Ventral Mesencephalic Cultures Do Not Explain the Protective Effect of Osteopontin and the Synthetic 15-mer RGD Domain Against MPP+ Toxicity

Overview
Journal Exp Neurol
Specialty Neurology
Date 2014 Sep 15
PMID 25218309
Citations 7
Authors
Affiliations
Soon will be listed here.
Abstract

The synthetic 15-mer arginine-glycine-aspartic acid (RGD) domain of osteopontin (OPN) is protective in vitro and in vivo against dopaminergic cell death and this protective effect may be mediated through interaction with integrin receptors to regulate neurotrophic factor levels. We now examine this concept in rat primary ventral mesencephalic (VM) cultures. 1-Methyl-4-phenylpyridinium (MPP+) exposure reduced tyrosine hydroxylase (TH)-positive cell number and activated glial cells as shown by increased glial fibrillary acidic protein (GFAP), oxycocin-42 (OX-42) and ectodermal dysplasia 1 (ED-1) immunoreactivity. Both OPN and the RGD domain of OPN were equally protective against MPP+ toxicity in VM cultures and both increased glial-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF) levels. The effects of OPN and the RGD domain were accompanied by a decrease in numbers of activated microglia but with no change in astrocyte number. However, full-length OPN and the RGD domain of OPN remained protective against MPP+ toxicity in the presence of a GDNF neutralising antibody. This suggests that increased GDNF levels do not underlie the protective effect observed with OPN. Rather, OPN's protective effect may be mediated through decreased glial cell activation.

Citing Articles

Immunoregulatory Roles of Osteopontin in Diseases.

Wang L, Niu X Nutrients. 2024; 16(2).

PMID: 38276550 PMC: 10819284. DOI: 10.3390/nu16020312.


Osteopontin - The stirring multifunctional regulatory factor in multisystem aging.

Du Y, Mao L, Wang Z, Yan K, Zhang L, Zou J Front Endocrinol (Lausanne). 2023; 13:1014853.

PMID: 36619570 PMC: 9813443. DOI: 10.3389/fendo.2022.1014853.


Integrin Signaling in the Central Nervous System in Animals and Human Brain Diseases.

Ikeshima-Kataoka H, Sugimoto C, Tsubokawa T Int J Mol Sci. 2022; 23(3).

PMID: 35163359 PMC: 8836133. DOI: 10.3390/ijms23031435.


Bone-Derived Modulators That Regulate Brain Function: Emerging Therapeutic Targets for Neurological Disorders.

Chen H, Shang D, Wen Y, Liang C Front Cell Dev Biol. 2021; 9:683457.

PMID: 34179014 PMC: 8222721. DOI: 10.3389/fcell.2021.683457.


The of osteopontin in nervous system diseases: damage repair.

Cappellano G, Vecchio D, Magistrelli L, Clemente N, Raineri D, Mazzucca C Neural Regen Res. 2020; 16(6):1131-1137.

PMID: 33269761 PMC: 8224140. DOI: 10.4103/1673-5374.300328.