» Articles » PMID: 25214427

Understanding Cerebral L-lysine Metabolism: the Role of L-pipecolate Metabolism in Gcdh-deficient Mice As a Model for Glutaric Aciduria Type I

Overview
Publisher Wiley
Date 2014 Sep 13
PMID 25214427
Citations 19
Authors
Affiliations
Soon will be listed here.
Abstract

Inherited deficiencies of the L-lysine catabolic pathway cause glutaric aciduria type I and pyridoxine-dependent epilepsy. Dietary modulation of cerebral L-lysine metabolism is thought to be an important therapeutic intervention for these diseases. To better understand cerebral L-lysine degradation, we studied in mice the two known catabolic routes -- pipecolate and saccharopine pathways -- using labeled stable L-lysine and brain peroxisomes purified according to a newly established protocol. Experiments with labeled stable L-lysine show that cerebral L-pipecolate is generated along two pathways: i) a minor proportion retrograde after ε-deamination of L-lysine along the saccharopine pathway, and ii) a major proportion anterograde after α-deamination of L-lysine along the pipecolate pathway. In line with these findings, we observed only little production of saccharopine in the murine brain. L-pipecolate oxidation was only detectable in brain peroxisomes, but L-pipecolate oxidase activity was low (7 ± 2μU/mg protein). In conclusion, L-pipecolate is a major degradation product from L-lysine in murine brain generated by α-deamination of this amino acid.

Citing Articles

The consumption of animal products is associated with plasma levels of alpha-aminoadipic acid (2-AAA).

Antonetti O, Desine S, Smith H, Robles M, McDonald E, Ovide G Nutr Metab Cardiovasc Dis. 2024; 34(7):1712-1720.

PMID: 38658223 PMC: 11188583. DOI: 10.1016/j.numecd.2024.03.009.


Untargeted metabolomics to evaluate polymyxin B toxicodynamics following direct intracerebroventricular administration into the rat brain.

Hussein M, Oberrauch S, Allobawi R, Cornthwaite-Duncan L, Lu J, Sharma R Comput Struct Biotechnol J. 2022; 20:6067-6077.

PMID: 36420146 PMC: 9667150. DOI: 10.1016/j.csbj.2022.10.041.


Metabolomics analysis of antiquitin deficiency in cultured human cells and plasma: Relevance to pyridoxine-dependent epilepsy.

Crowther L, Poms M, Zandl-Lang M, Abela L, Hartmann H, Seiler M J Inherit Metab Dis. 2022; 46(1):129-142.

PMID: 36225138 PMC: 10092344. DOI: 10.1002/jimd.12569.


Characterization and structure of the human lysine-2-oxoglutarate reductase domain, a novel therapeutic target for treatment of glutaric aciduria type 1.

Leandro J, Khamrui S, Suebsuwong C, Chen P, Secor C, Dodatko T Open Biol. 2022; 12(9):220179.

PMID: 36128717 PMC: 9490328. DOI: 10.1098/rsob.220179.


Metabolomic Characterization of Acute Ischemic Stroke Facilitates Metabolomic Biomarker Discovery.

Qi B, Zhang Y, Xu B, Zhang Y, Fei G, Lin L Appl Biochem Biotechnol. 2022; 194(11):5443-5455.

PMID: 35789984 DOI: 10.1007/s12010-022-04024-1.


References
1.
Singh H, Usher S, Poulos A . Mitochondrial and peroxisomal beta-oxidation of stearic and lignoceric acids by rat brain. J Neurochem. 1989; 53(6):1711-8. DOI: 10.1111/j.1471-4159.1989.tb09235.x. View

2.
Lazo O, Singh A, Singh I . Postnatal development and isolation of peroxisomes from brain. J Neurochem. 1991; 56(4):1343-53. DOI: 10.1111/j.1471-4159.1991.tb11431.x. View

3.
Wanders B, Denis S, dAcremont G . Studies on the substrate specificity of the inducible and non-inducible acyl-CoA oxidases from rat kidney peroxisomes. J Biochem. 1993; 113(5):577-82. DOI: 10.1093/oxfordjournals.jbchem.a124086. View

4.
Danhauser K, Sauer S, Haack T, Wieland T, Staufner C, Graf E . DHTKD1 mutations cause 2-aminoadipic and 2-oxoadipic aciduria. Am J Hum Genet. 2012; 91(6):1082-7. PMC: 3516599. DOI: 10.1016/j.ajhg.2012.10.006. View

5.
Mihalik S, Rhead W . L-pipecolic acid oxidation in the rabbit and cynomolgus monkey. Evidence for differing organellar locations and cofactor requirements in each species. J Biol Chem. 1989; 264(5):2509-17. View