» Articles » PMID: 25210866

Physiological Responses Related to Increased Grain Yield Under Drought in the First Biotechnology-derived Drought-tolerant Maize

Abstract

Maize (Zea mays ssp. mays L.) is highly susceptible to drought stress. This work focused on whole-plant physiological mechanisms by which a biotechnology-derived maize event expressing bacterial cold shock protein B (CspB), MON 87460, increased grain yield under drought. Plants of MON 87460 and a conventional control (hereafter 'control') were tested in the field under well-watered (WW) and water-limited (WL) treatments imposed during mid-vegetative to mid-reproductive stages during 2009-2011. Across years, average grain yield increased by 6% in MON 87460 compared with control under WL conditions. This was associated with higher soil water content at 0.5 m depth during the treatment phase, increased ear growth, decreased leaf area, leaf dry weight and sap flow rate during silking, increased kernel number and harvest index in MON 87460 than the control. No consistent differences were observed under WW conditions. This indicates that MON 87460 acclimated better under WL conditions than the control by lowering leaf growth which decreased water use during silking, thereby eliciting lower stress under WL conditions. These physiological responses in MON 87460 under WL conditions resulted in increased ear growth during silking, which subsequently increased the kernel number, harvest index and grain yield compared to the control.

Citing Articles

A review on strategies for crop improvement against drought stress through molecular insights.

Sharma A, Dheer P, Rautela I, Thapliyal P, Thapliyal P, Bajpai A 3 Biotech. 2024; 14(7):173.

PMID: 38846012 PMC: 11150236. DOI: 10.1007/s13205-024-04020-8.


Regulatory networks in plant responses to drought and cold stress.

Kim J, Kidokoro S, Yamaguchi-Shinozaki K, Shinozaki K Plant Physiol. 2024; 195(1):170-189.

PMID: 38514098 PMC: 11060690. DOI: 10.1093/plphys/kiae105.


Efficacy of Event MON 87460 in drought-tolerant maize hybrids under optimal and managed drought-stress in eastern and southern africa.

Obunyali C, Pillay K, Meisel B, Ndou E, Mashingaidze K, Sserumaga J J Genet Eng Biotechnol. 2024; 22(1):100352.

PMID: 38494265 PMC: 10941202. DOI: 10.1016/j.jgeb.2024.100352.


Efficacy of drought-tolerant and insect-protected transgenic TELA® maize traits in Nigeria.

Oyekunle M, Adamu R, Ndou E, Beyene Y, Abdulmalik M, Oikeh S Transgenic Res. 2023; 32(3):169-178.

PMID: 37043164 DOI: 10.1007/s11248-023-00345-x.


Improving abiotic stress tolerance of forage grasses - prospects of using genome editing.

Sustek-Sanchez F, Rognli O, Rostoks N, Somera M, Jaskune K, Kovi M Front Plant Sci. 2023; 14:1127532.

PMID: 36824201 PMC: 9941169. DOI: 10.3389/fpls.2023.1127532.