» Articles » PMID: 25202689

Nanomedicines for Cancer Therapy: State-of-the-art and Limitations to Pre-clinical Studies That Hinder Future Developments

Overview
Journal Front Chem
Specialty Chemistry
Date 2014 Sep 10
PMID 25202689
Citations 45
Authors
Affiliations
Soon will be listed here.
Abstract

The ability to efficiently deliver a drug or gene to a tumor site is dependent on a wide range of factors including circulation time, interactions with the mononuclear phagocyte system, extravasation from circulation at the tumor site, targeting strategy, release from the delivery vehicle, and uptake in cancer cells. Nanotechnology provides the possibility of creating delivery systems where the design constraints are decoupled, allowing new approaches for reducing the unwanted side effects of systemic delivery, increasing tumor accumulation, and improving efficacy. The physico-chemical properties of nanoparticle-based delivery platforms introduce additional complexity associated with pharmacokinetics, tumor accumulation, and biodistribution. To assess the impact of nanoparticle-based delivery systems, we first review the design strategies and pharmacokinetics of FDA-approved nanomedicines. Next we review nanomedicines under development, summarizing the range of nanoparticle platforms, strategies for targeting, and pharmacokinetics. We show how the lack of uniformity in preclinical trials prevents systematic comparison and hence limits advances in the field.

Citing Articles

Alternative Strategies for Delivering Immunotherapeutics Targeting the PD-1/PD-L1 Immune Checkpoint in Cancer.

Hoshi R, Gorospe K, Labouta H, Azad T, Lee W, Thu K Pharmaceutics. 2024; 16(9).

PMID: 39339217 PMC: 11434872. DOI: 10.3390/pharmaceutics16091181.


Targeting ferroptosis for leukemia therapy: exploring novel strategies from its mechanisms and role in leukemia based on nanotechnology.

Ashoub M, Razavi R, Heydaryan K, Salavati-Niasari M, Amiri M Eur J Med Res. 2024; 29(1):224.

PMID: 38594732 PMC: 11003188. DOI: 10.1186/s40001-024-01822-7.


Applications of Nanomedicine in Brain Tumor Therapy: Nanocarrierbased Drug Delivery Platforms, Challenges, and Perspectives.

Verma R, Rao L, Kumar H, Bansal N, Deep A, Parashar J Recent Pat Nanotechnol. 2023; 19(1):99-119.

PMID: 37937554 DOI: 10.2174/0118722105244482231017102857.


A di-electrophoretic simulation procedure of iron-oxide micro-particle drug attachment system for leukemia treatment using COMSOL software: a potential treatment reference for LMICs.

Kiwumulo H, Muwonge H, Ibingira C, Lubwama M, Kirabira J, Ssekitoleko R Front Med Technol. 2023; 5:1250964.

PMID: 37901748 PMC: 10602814. DOI: 10.3389/fmedt.2023.1250964.


Emetic Tartar-Loaded Liposomes as a New Strategy for Leishmaniasis Treatment.

Coelho L, Souza M, Cassali G, Silva R, Paiva M, Barros A Pharmaceutics. 2023; 15(3).

PMID: 36986765 PMC: 10056186. DOI: 10.3390/pharmaceutics15030904.


References
1.
Yu B, Mao Y, Bai L, Herman S, Wang X, Ramanunni A . Targeted nanoparticle delivery overcomes off-target immunostimulatory effects of oligonucleotides and improves therapeutic efficacy in chronic lymphocytic leukemia. Blood. 2012; 121(1):136-47. PMC: 3538326. DOI: 10.1182/blood-2012-01-407742. View

2.
Benezra M, Penate-Medina O, Zanzonico P, Schaer D, Ow H, Burns A . Multimodal silica nanoparticles are effective cancer-targeted probes in a model of human melanoma. J Clin Invest. 2011; 121(7):2768-80. PMC: 3223837. DOI: 10.1172/JCI45600. View

3.
Michalet X, Pinaud F, Bentolila L, Tsay J, Doose S, Li J . Quantum dots for live cells, in vivo imaging, and diagnostics. Science. 2005; 307(5709):538-44. PMC: 1201471. DOI: 10.1126/science.1104274. View

4.
Ruoslahti E . RGD and other recognition sequences for integrins. Annu Rev Cell Dev Biol. 1996; 12:697-715. DOI: 10.1146/annurev.cellbio.12.1.697. View

5.
Helbok A, Rangger C, von Guggenberg E, Saba-Lepek M, Radolf T, Thurner G . Targeting properties of peptide-modified radiolabeled liposomal nanoparticles. Nanomedicine. 2011; 8(1):112-8. DOI: 10.1016/j.nano.2011.04.012. View