Chemical Modification of Graphene Via Hyperthermal Molecular Reaction
Overview
Authors
Affiliations
Chemical functionalization of graphene is achieved by hyperthermal reaction with azopyridine molecular ions. The one-step, room temperature process takes place in high vacuum (10(-7) mbar) using an electrospray ion beam deposition (ES-IBD) setup. For ion surface collisions exceeding a threshold kinetic energy of 165 eV, molecular cation beams of 4,4'-azobis(pyridine) covalently attach to chemical vapor deposited (CVD) graphene. A covalent functionalization degree of 3% of the carbon atoms of graphene is reached after 3-5 h of ion exposure of 2 × 10(14) azopyridinium/cm(2) of which 50% bind covalently. This facile approach for the controlled modification of graphene extends the scope of candidate species that would not otherwise react via existing conventional methods.
Landing Proteins on Graphene Trampoline Preserves Their Gas-Phase Folding on the Surface.
Anggara K, Ochner H, Szilagyi S, Malavolti L, Rauschenbach S, Kern K ACS Cent Sci. 2023; 9(2):151-158.
PMID: 36844500 PMC: 9951278. DOI: 10.1021/acscentsci.2c00815.
Walz A, Stoiber K, Huettig A, Schlichting H, Barth J Anal Chem. 2022; 94(22):7767-7778.
PMID: 35609119 PMC: 9178560. DOI: 10.1021/acs.analchem.1c04495.
Substrate-Selective Morphology of Cesium Iodide Clusters on Graphene.
Vats N, Wang Y, Sen S, Szilagyi S, Ochner H, Abb S ACS Nano. 2020; 14(4):4626-4635.
PMID: 32283013 PMC: 7304923. DOI: 10.1021/acsnano.9b10053.
2D Chemistry: Chemical Control of Graphene Derivatization.
Matochova D, Medved M, Bakandritsos A, Stekly T, Zboril R, Otyepka M J Phys Chem Lett. 2018; 9(13):3580-3585.
PMID: 29890828 PMC: 6038093. DOI: 10.1021/acs.jpclett.8b01596.
Reactivity of fluorographene is triggered by point defects: beyond the perfect 2D world.
Medved M, Zoppellaro G, Ugolotti J, Matochova D, Lazar P, Pospisil T Nanoscale. 2018; 10(10):4696-4707.
PMID: 29442111 PMC: 5892133. DOI: 10.1039/c7nr09426d.