» Articles » PMID: 25174580

Molecular and Structural Transmembrane Determinants Critical for Embedding Claudin-5 into Tight Junctions Reveal a Distinct Four-helix Bundle Arrangement

Overview
Journal Biochem J
Specialty Biochemistry
Date 2014 Sep 2
PMID 25174580
Citations 9
Authors
Affiliations
Soon will be listed here.
Abstract

The mechanism of TJ (tight junction) assembly and the structure of TJ strand-forming Cldns (claudins) are unclear. To identify determinants of assembly of blood-brain barrier-related Cldn3 and Cldn5, chimaeric mutants were analysed by cellular reconstitution of TJ strands and live-cell imaging. On the basis of the rescue of mutants deficient for strand formation, we identified Cldn5 residues (Cys128, Ala132, Ile142, Ala163, Ile166 and Leu174) involved in Cldn folding and assembly. Experimental results were combined with structural bioinformatics approaches. Initially the experimentally validated previous model of the ECL2 (extracellular loop 2) of Cldn5 was extended to the flanking transmembrane segments (TM3/TM4). A coiled-coil interface probably caused by alternating small and large residues is supported by concomitant knob-into-hole interactions including Cldn5-specific residues identified in the present paper. To address arrangement of the TMs in a four-helix bundle, data from evolutionary sequence couplings and comparative modelling of intramolecular interfaces in the transmembrane region of Cldns led to a complete Cldn5 model. Our suggested Cldn subtype-specific intramolecular interfaces that are formed by conserved coiled-coil motifs and non-conserved residues in distinct TM positions were confirmed by the recently released crystal structure of Cldn15. The identified molecular and structural determinants essentially contribute to assembly of Cldns into TJ strands.

Citing Articles

enterotoxin-claudin pore complex: Models for structure, mechanism of pore assembly and cation permeability.

Nagarajan S, Weber J, Roderer D, Piontek J Comput Struct Biotechnol J. 2025; 27:287-306.

PMID: 39881828 PMC: 11774686. DOI: 10.1016/j.csbj.2024.11.048.


Role of TM3 in claudin-15 strand flexibility: A molecular dynamics study.

Fuladi S, McGuinness S, Khalili-Araghi F Front Mol Biosci. 2022; 9:964877.

PMID: 36250014 PMC: 9557151. DOI: 10.3389/fmolb.2022.964877.


Morphologic determinant of tight junctions revealed by claudin-3 structures.

Nakamura S, Irie K, Tanaka H, Nishikawa K, Suzuki H, Saitoh Y Nat Commun. 2019; 10(1):816.

PMID: 30778075 PMC: 6379431. DOI: 10.1038/s41467-019-08760-7.


Claudin-1-Dependent Destabilization of the Blood-Brain Barrier in Chronic Stroke.

Sladojevic N, Stamatovic S, Johnson A, Choi J, Hu A, Dithmer S J Neurosci. 2018; 39(4):743-757.

PMID: 30504279 PMC: 6343646. DOI: 10.1523/JNEUROSCI.1432-18.2018.


Tight junctions of the proximal tubule and their channel proteins.

Fromm M, Piontek J, Rosenthal R, Gunzel D, Krug S Pflugers Arch. 2017; 469(7-8):877-887.

PMID: 28600680 DOI: 10.1007/s00424-017-2001-3.