» Articles » PMID: 25161240

Assessing the Local Structural Quality of Transmembrane Protein Models Using Statistical Potentials (QMEANBrane)

Overview
Journal Bioinformatics
Specialty Biology
Date 2014 Aug 28
PMID 25161240
Citations 79
Authors
Affiliations
Soon will be listed here.
Abstract

Motivation: Membrane proteins are an important class of biological macromolecules involved in many cellular key processes including signalling and transport. They account for one third of genes in the human genome and >50% of current drug targets. Despite their importance, experimental structural data are sparse, resulting in high expectations for computational modelling tools to help fill this gap. However, as many empirical methods have been trained on experimental structural data, which is biased towards soluble globular proteins, their accuracy for transmembrane proteins is often limited.

Results: We developed a local model quality estimation method for membrane proteins ('QMEANBrane') by combining statistical potentials trained on membrane protein structures with a per-residue weighting scheme. The increasing number of available experimental membrane protein structures allowed us to train membrane-specific statistical potentials that approach statistical saturation. We show that reliable local quality estimation of membrane protein models is possible, thereby extending local quality estimation to these biologically relevant molecules.

Availability And Implementation: Source code and datasets are available on request.

Supplementary Information: Supplementary data are available at Bioinformatics online.

Citing Articles

Advances of deep Neural Networks (DNNs) in the development of peptide drugs.

Niu Y, Qin P, Lin P Future Med Chem. 2025; 17(4):485-499.

PMID: 39935356 PMC: 11834456. DOI: 10.1080/17568919.2025.2463319.


Transmembrane Prostate Androgen-Induced Protein 1 Molecular Modeling and Refinement Using Coarse-Grained Molecular Dynamics.

Wicaksono I, Destiarani W, Romadhon S, Nugraha B, Yusuf M, Milanda T ACS Omega. 2025; 10(3):2712-2724.

PMID: 39895701 PMC: 11780462. DOI: 10.1021/acsomega.4c08451.


Detectability of cytokine and chemokine using ELISA, following sample-inactivation using Triton X-100 or heat.

Labossiere E, Gonzalez-Diaz S, Enns S, Lopez P, Yang X, Kidane B Sci Rep. 2024; 14(1):26777.

PMID: 39500912 PMC: 11538312. DOI: 10.1038/s41598-024-74739-0.


Key role of the TM2-TM3 loop in calcium potentiation of the α9α10 nicotinic acetylcholine receptor.

Gallino S, Aguero L, Boffi J, Schottlender G, Buonfiglio P, Dalamon V Cell Mol Life Sci. 2024; 81(1):337.

PMID: 39120784 PMC: 11335262. DOI: 10.1007/s00018-024-05381-2.


Presynaptic hyperexcitability reversed by positive allosteric modulation of a GABABR epilepsy variant.

Minere M, Mortensen M, Dorovykh V, Warnes G, Nizetic D, Smart T Brain. 2024; 148(2):533-548.

PMID: 39028675 PMC: 11788220. DOI: 10.1093/brain/awae232.


References
1.
Lomize A, Pogozheva I, Lomize M, Mosberg H . Positioning of proteins in membranes: a computational approach. Protein Sci. 2006; 15(6):1318-33. PMC: 2242528. DOI: 10.1110/ps.062126106. View

2.
Sanner M, Olson A, Spehner J . Reduced surface: an efficient way to compute molecular surfaces. Biopolymers. 1996; 38(3):305-20. DOI: 10.1002/(SICI)1097-0282(199603)38:3%3C305::AID-BIP4%3E3.0.CO;2-Y. View

3.
Sippl M . Calculation of conformational ensembles from potentials of mean force. An approach to the knowledge-based prediction of local structures in globular proteins. J Mol Biol. 1990; 213(4):859-83. DOI: 10.1016/s0022-2836(05)80269-4. View

4.
Kiefer F, Arnold K, Kunzli M, Bordoli L, Schwede T . The SWISS-MODEL Repository and associated resources. Nucleic Acids Res. 2008; 37(Database issue):D387-92. PMC: 2686475. DOI: 10.1093/nar/gkn750. View

5.
Olechnovic K, Kulberkyte E, Venclovas C . CAD-score: a new contact area difference-based function for evaluation of protein structural models. Proteins. 2012; 81(1):149-62. DOI: 10.1002/prot.24172. View