» Articles » PMID: 25156685

Enhanced Tunnel Spin Injection into Graphene Using Chemical Vapor Deposited Hexagonal Boron Nitride

Overview
Journal Sci Rep
Specialty Science
Date 2014 Aug 27
PMID 25156685
Citations 22
Authors
Affiliations
Soon will be listed here.
Abstract

The van der Waals heterostructures of two-dimensional (2D) atomic crystals constitute a new paradigm in nanoscience. Hybrid devices of graphene with insulating 2D hexagonal boron nitride (h-BN) have emerged as promising nanoelectronic architectures through demonstrations of ultrahigh electron mobilities and charge-based tunnel transistors. Here, we expand the functional horizon of such 2D materials demonstrating the quantum tunneling of spin polarized electrons through atomic planes of CVD grown h-BN. We report excellent tunneling behavior of h-BN layers together with tunnel spin injection and transport in graphene using ferromagnet/h-BN contacts. Employing h-BN tunnel contacts, we observe enhancements in both spin signal amplitude and lifetime by an order of magnitude. We demonstrate spin transport and precession over micrometer-scale distances with spin lifetime up to 0.46 nanosecond. Our results and complementary magnetoresistance calculations illustrate that CVD h-BN tunnel barrier provides a reliable, reproducible and alternative approach to address the conductivity mismatch problem for spin injection into graphene.

Citing Articles

Scalable Bottom-Up Synthesis of Nanoporous Hexagonal Boron Nitride (-BN) for Large-Area Atomically Thin Ceramic Membranes.

Naclerio A, Cheng P, Hus S, Diulus J, Diulius J, Checa M Nano Lett. 2025; 25(8):3221-3232.

PMID: 39950681 PMC: 11869279. DOI: 10.1021/acs.nanolett.4c05939.


Large-Scale Direct Growth of Monolayer MoS on Patterned Graphene for van der Waals Ultrafast Photoactive Circuits.

Sharma R, Nameirakpam H, Belinchon D, Sharma P, Noumbe U, Belotcerkovtceva D ACS Appl Mater Interfaces. 2024; 16(29):38711-38722.

PMID: 38995218 PMC: 11284756. DOI: 10.1021/acsami.4c07028.


Highly-efficient growth of cobalt nanostructures using focused ion beam induced deposition under cryogenic conditions: application to electrical contacts on graphene, magnetism and hard masking.

Salvador-Porroche A, Sangiao S, Magen C, Barrado M, Philipp P, Belotcerkovtceva D Nanoscale Adv. 2022; 3(19):5656-5662.

PMID: 36133267 PMC: 9418482. DOI: 10.1039/d1na00580d.


Gate-Controlled Supercurrent in Epitaxial Al/InAs Nanowires.

Elalaily T, Kurtossy O, Scherubl Z, Berke M, Fulop G, Lukacs I Nano Lett. 2021; 21(22):9684-9690.

PMID: 34726405 PMC: 8631737. DOI: 10.1021/acs.nanolett.1c03493.


A Josephson junction with-BN tunnel barrier: observation of low critical current noise.

Tian J, Jauregui L, Wilen C, Rigosi A, Newell D, McDermott R J Phys Condens Matter. 2021; 33(49).

PMID: 34521077 PMC: 10390952. DOI: 10.1088/1361-648X/ac268f.


References
1.
Cobas E, Friedman A, Vant Erve O, Robinson J, Jonker B . Graphene as a tunnel barrier: graphene-based magnetic tunnel junctions. Nano Lett. 2012; 12(6):3000-4. DOI: 10.1021/nl3007616. View

2.
Britnell L, Gorbachev R, Jalil R, Belle B, Schedin F, Katsnelson M . Electron tunneling through ultrathin boron nitride crystalline barriers. Nano Lett. 2012; 12(3):1707-10. DOI: 10.1021/nl3002205. View

3.
van t Erve O, Friedman A, Cobas E, Li C, Robinson J, Jonker B . Low-resistance spin injection into silicon using graphene tunnel barriers. Nat Nanotechnol. 2012; 7(11):737-42. DOI: 10.1038/nnano.2012.161. View

4.
Novoselov K, Jiang D, Schedin F, Booth T, Khotkevich V, Morozov S . Two-dimensional atomic crystals. Proc Natl Acad Sci U S A. 2005; 102(30):10451-3. PMC: 1180777. DOI: 10.1073/pnas.0502848102. View

5.
Britnell L, Gorbachev R, Jalil R, Belle B, Schedin F, Mishchenko A . Field-effect tunneling transistor based on vertical graphene heterostructures. Science. 2012; 335(6071):947-50. DOI: 10.1126/science.1218461. View