» Articles » PMID: 25154648

Fungal Biosynthesis of Gold Nanoparticles: Mechanism and Scale Up

Overview
Date 2014 Aug 27
PMID 25154648
Citations 60
Authors
Affiliations
Soon will be listed here.
Abstract

Gold nanoparticles (AuNPs) are a widespread research tool because of their oxidation resistance, biocompatibility and stability. Chemical methods for AuNP synthesis often produce toxic residues that raise environmental concern. On the other hand, the biological synthesis of AuNPs in viable microorganisms and their cell-free extracts is an environmentally friendly and low-cost process. In general, fungi tolerate higher metal concentrations than bacteria and secrete abundant extracellular redox proteins to reduce soluble metal ions to their insoluble form and eventually to nanocrystals. Fungi harbour untapped biological diversity and may provide novel metal reductases for metal detoxification and bioreduction. A thorough understanding of the biosynthetic mechanism of AuNPs in fungi is needed to reduce the time of biosynthesis and to scale up the AuNP production process. In this review, we describe the known mechanisms for AuNP biosynthesis in viable fungi and fungal protein extracts and discuss the most suitable bioreactors for industrial AuNP biosynthesis.

Citing Articles

Mycosynthesis of zinc sulfide/zinc oxide nanocomposite using Fusarium oxysporum for catalytic degradation of methylene blue dye, antimicrobial, and anticancer activities.

Salaheldin H, Aboelnga A, Elsayed A Sci Rep. 2024; 14(1):32165.

PMID: 39741154 PMC: 11688424. DOI: 10.1038/s41598-024-81855-4.


Green Synthesis of Zinc Oxide Nanoparticles: Preparation, Characterization, and Biomedical Applications - A Review.

El-Saadony M, Fang G, Yan S, Sami Alkafaas S, El Nasharty M, Khedr S Int J Nanomedicine. 2024; 19:12889-12937.

PMID: 39651353 PMC: 11624689. DOI: 10.2147/IJN.S487188.


Biotechnological advances in microbial synthesis of gold nanoparticles: Optimizations and applications.

Verma J, Kumar C, Sharma M, Saxena S 3 Biotech. 2024; 14(11):263.

PMID: 39387004 PMC: 11458872. DOI: 10.1007/s13205-024-04110-7.


Biosynthesis of gold nanoparticles by fungi and its potential in SERS.

Olvera-Aripez J, Camacho-Lopez S, Flores-Castaneda M, Belman-Rodriguez C, Vilchis-Nestor A, Castro-Longoria E Bioprocess Biosyst Eng. 2024; 47(9):1585-1593.

PMID: 38922411 DOI: 10.1007/s00449-024-03053-w.


Myco-generated and analysis of magnetite (Fe3O4) nanoparticles using Aspergillus elegans extract: A comparative evaluation with a traditional chemical approach.

Mhammedsharif R, Jalil P, Piro N, Mohammed A, Aspoukeh P Heliyon. 2024; 10(11):e31352.

PMID: 38828346 PMC: 11140620. DOI: 10.1016/j.heliyon.2024.e31352.


References
1.
Wani I, Ahmad T, Manzoor N . Size and shape dependant antifungal activity of gold nanoparticles: a case study of Candida. Colloids Surf B Biointerfaces. 2012; 101:162-70. DOI: 10.1016/j.colsurfb.2012.06.005. View

2.
Suresh A, Pelletier D, Wang W, Broich M, Moon J, Gu B . Biofabrication of discrete spherical gold nanoparticles using the metal-reducing bacterium Shewanella oneidensis. Acta Biomater. 2011; 7(5):2148-52. DOI: 10.1016/j.actbio.2011.01.023. View

3.
Sweeney S, Woehrle G, Hutchison J . Rapid purification and size separation of gold nanoparticles via diafiltration. J Am Chem Soc. 2006; 128(10):3190-7. DOI: 10.1021/ja0558241. View

4.
Gupta S, Devi S, Singh K . Biosynthesis and characterization of Au-nanostructures by metal tolerant fungi. J Basic Microbiol. 2011; 51(6):601-6. DOI: 10.1002/jobm.201100157. View

5.
Narayanan K, Sakthivel N . Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interface Sci. 2010; 156(1-2):1-13. DOI: 10.1016/j.cis.2010.02.001. View