» Articles » PMID: 25133021

Review to Better Understand the Macroscopic Subtypes and Histogenesis of Intrahepatic Cholangiocarcinoma

Overview
Specialty Gastroenterology
Date 2014 Aug 19
PMID 25133021
Citations 9
Authors
Affiliations
Soon will be listed here.
Abstract

Intrahepatic cholangiocarcinoma is macroscopically classified into three subtypes, mass-forming-type, periductal infiltrating-type, and intraductal growth-type. Each subtype should be preoperatively differentiated to perform the valid surgical resection. Recent researches have revealed the clinical, radiologic, pathobiological characteristics of each subtype. We reviewed recently published studies covering various aspects of intrahepatic cholangiocarcinoma (ICC), focusing especially on the macroscopic subtypes and stem cell features to better understand the pathophysiology of ICC and to establish the valid therapeutic strategy.

Citing Articles

Vascular Resection for Intrahepatic Cholangiocarcinoma: Current Considerations.

Alikhanov R, Dudareva A, Trigo M, Serrablo A J Clin Med. 2021; 10(17).

PMID: 34501276 PMC: 8432051. DOI: 10.3390/jcm10173829.


Apparent diffusion coefficient value of mass-forming intrahepatic cholangiocarcinoma: a potential imaging biomarker for prediction of lymph node metastasis.

Zhou Y, Zhou G, Gao X, Xu C, Wang X, Xu P Abdom Radiol (NY). 2020; 45(10):3109-3118.

PMID: 32107582 DOI: 10.1007/s00261-020-02458-x.


Macroscopic types of intrahepatic cholangiocarcinoma and the eighth edition of AJCC/UICC TNM staging system.

Meng Z, Pan W, Hong H, Chen J, Chen Y Oncotarget. 2017; 8(60):101165-101174.

PMID: 29254154 PMC: 5731864. DOI: 10.18632/oncotarget.20932.


Modified staging classification for intrahepatic cholangiocarcinoma based on the sixth and seventh editions of the AJCC/UICC TNM staging systems.

Meng Z, Pan W, Hong H, Chen J, Chen Y Medicine (Baltimore). 2017; 96(34):e7891.

PMID: 28834905 PMC: 5572027. DOI: 10.1097/MD.0000000000007891.


Pathology of intrahepatic cholangiocarcinoma.

Vijgen S, Terris B, Rubbia-Brandt L Hepatobiliary Surg Nutr. 2017; 6(1):22-34.

PMID: 28261592 PMC: 5332210. DOI: 10.21037/hbsn.2016.11.04.


References
1.
Yap A, Chen C, Yong C, Kuo F, Wang S, Lin C . Clinicopathological factors impact the survival outcome following the resection of combined hepatocellular carcinoma and cholangiocarcinoma. Surg Oncol. 2012; 22(1):55-60. DOI: 10.1016/j.suronc.2012.09.003. View

2.
Lee D, Do I, Choi K, Sung C, Jang K, Choi D . The expression of phospho-AKT1 and phospho-MTOR is associated with a favorable prognosis independent of PTEN expression in intrahepatic cholangiocarcinomas. Mod Pathol. 2011; 25(1):131-9. DOI: 10.1038/modpathol.2011.133. View

3.
Yao X, Wang X, Wang Z, Dai L, Zhang G, Yan Q . Clinicopathological and prognostic significance of epithelial mesenchymal transition-related protein expression in intrahepatic cholangiocarcinoma. Onco Targets Ther. 2012; 5:255-61. PMC: 3472698. DOI: 10.2147/OTT.S36213. View

4.
Sulpice L, Rayar M, Desille M, Turlin B, Fautrel A, Boucher E . Molecular profiling of stroma identifies osteopontin as an independent predictor of poor prognosis in intrahepatic cholangiocarcinoma. Hepatology. 2013; 58(6):1992-2000. DOI: 10.1002/hep.26577. View

5.
Okamoto K, Tajima H, Nakanuma S, Sakai S, Makino I, Kinoshita J . Angiotensin II enhances epithelial-to-mesenchymal transition through the interaction between activated hepatic stellate cells and the stromal cell-derived factor-1/CXCR4 axis in intrahepatic cholangiocarcinoma. Int J Oncol. 2012; 41(2):573-82. DOI: 10.3892/ijo.2012.1499. View