» Articles » PMID: 25105471

Excited-state Dynamics of 3-hydroxyflavone Anion in Alcohols

Overview
Journal J Phys Chem B
Specialty Chemistry
Date 2014 Aug 9
PMID 25105471
Citations 5
Authors
Affiliations
Soon will be listed here.
Abstract

The electronic absorption spectrum of 3-hydroxyflavone (3HF) in various solvents exhibits a long-wavelength (LW) band, whose origin has been debated. The excited-state dynamics of neutral and basic solutions of 3HF in alcohols upon excitation in this LW band has been investigated using a combination of fluorescence up-conversion and transient electronic and vibrational absorption spectroscopies. The ensemble of results reveals that, in neutral solutions, LW excitation results in the population of two excited species with similar fluorescence spectra but very different lifetimes, namely 40-100 ps and 2-3 ns, depending on the solvent. In basic solutions, the relative concentrations of these species change considerably in favor of that with the short-lived excited state. On the basis of the spectroscopic data and quantum chemistry calculations, the short lifetime is attributed to the excited state of 3HF anion, whereas the long one is tentatively assigned to an excited hydrogen-bonded complex with the solvent. Excited-state intermolecular proton transfer from the solvent to the anion yielding the tautomeric form of 3HF is not operative, as the excited anion decays to the ground state via an efficient nonradiative transition.

Citing Articles

Fast and accurate identification of pathogenic bacteria using excitation-emission spectroscopy and machine learning.

Henry J, Endres J, Sadykov M, Bayles K, Svechkarev D Sens Diagn. 2024; 3(8):1253-1262.

PMID: 39129861 PMC: 11308375. DOI: 10.1039/d4sd00070f.


pH dependency of the structural and photophysical properties of the atypical 2',3-dihydroxyflavone.

Labarriere L, Moncomble A, Cornard J RSC Adv. 2022; 10(58):35017-35030.

PMID: 35515691 PMC: 9056863. DOI: 10.1039/d0ra06833k.


3-Hydroxyflavone derivatives: promising scaffolds for fluorescent imaging in cells.

Zhao X, Li X, Liang S, Dong X, Zhang Z RSC Adv. 2022; 11(46):28851-28862.

PMID: 35478549 PMC: 9038104. DOI: 10.1039/d1ra04767a.


Probing the self-assembly dynamics and internal structure of amphiphilic hyaluronic acid conjugates by fluorescence spectroscopy and molecular dynamics simulations.

Svechkarev D, Kyrychenko A, Payne W, Mohs A Soft Matter. 2018; 14(23):4762-4771.

PMID: 29799600 PMC: 5999590. DOI: 10.1039/c8sm00908b.


Ratiometric Fluorescent Sensor Array as a Versatile Tool for Bacterial Pathogen Identification and Analysis.

Svechkarev D, Sadykov M, Bayles K, Mohs A ACS Sens. 2018; 3(3):700-708.

PMID: 29504753 PMC: 5938749. DOI: 10.1021/acssensors.8b00025.