» Articles » PMID: 25101285

Iron Metabolism Disturbance in a French Cohort of ALS Patients

Abstract

Objective: The aim of this study was to assess iron status in a cohort of amyotrophic lateral sclerosis (ALS) patients compared to controls in order to evaluate these parameters as a risk factor or a modifying factor of ALS.

Methods: We collected serum iron, ferritin, transferrin, total iron-binding capacity, and transferrin saturation coefficient (TSC) from 104 ALS patients at the time of diagnosis and from 145 controls. We reported phenotypic characteristics and evolution parameters such as ALSFRS-R and forced vital capacity at diagnosis and after one year of follow-up. In a first step we compared iron status between ALS patients and controls, and then we evaluated the relation between iron status and disease evolution of ALS patients using univariate and multivariate analysis.

Results: We observed increased concentrations of serum iron (P = 0.002) and ferritin (P < 0.0001) and increased TSC (P = 0.017) in ALS patients. We also showed an association between markers of iron status and high body weight loss in ALS patients. The multivariate analysis of survival highlighted a significant relation between ferritin level and disease duration (P = 0.038).

Conclusion: This is the first study showing a higher concentration of serum iron in ALS patients, strengthening the involvement of a deregulation of iron metabolism in ALS.

Citing Articles

Iron homeostasis and ferroptosis in muscle diseases and disorders: mechanisms and therapeutic prospects.

Ru Q, Li Y, Zhang X, Chen L, Wu Y, Min J Bone Res. 2025; 13(1):27.

PMID: 40000618 PMC: 11861620. DOI: 10.1038/s41413-024-00398-6.


Ferritin is closely associated with microglia in amyotrophic lateral sclerosis.

Gao J, Okolo O, Siedlak S, Friedland R, Wang X J Neuropathol Exp Neurol. 2024; 83(11):917-926.

PMID: 39001793 PMC: 11487107. DOI: 10.1093/jnen/nlae074.


Exploring antioxidant strategies in the pathogenesis of ALS.

Pinilla-Gonzalez V, Montecinos-Barrientos B, Martin-Kommer C, Chichiarelli S, Saso L, Rodrigo R Open Life Sci. 2024; 19(1):20220842.

PMID: 38585631 PMC: 10997151. DOI: 10.1515/biol-2022-0842.


HFE Mutations in Neurodegenerative Disease as a Model of Hormesis.

Marshall Moscon S, Connor J Int J Mol Sci. 2024; 25(6).

PMID: 38542306 PMC: 10970347. DOI: 10.3390/ijms25063334.


Research progress on ferroptosis in the pathogenesis and treatment of neurodegenerative diseases.

Wang L, Fang X, Ling B, Wang F, Xia Y, Zhang W Front Cell Neurosci. 2024; 18:1359453.

PMID: 38515787 PMC: 10955106. DOI: 10.3389/fncel.2024.1359453.


References
1.
Nappi A, Vass E . Iron, metalloenzymes and cytotoxic reactions. Cell Mol Biol (Noisy-le-grand). 2000; 46(3):637-47. View

2.
Winkler E, Sengillo J, Sagare A, Zhao Z, Ma Q, Zuniga E . Blood-spinal cord barrier disruption contributes to early motor-neuron degeneration in ALS-model mice. Proc Natl Acad Sci U S A. 2014; 111(11):E1035-42. PMC: 3964055. DOI: 10.1073/pnas.1401595111. View

3.
van Rheenen W, Diekstra F, van Doormaal P, Seelen M, Kenna K, McLaughlin R . H63D polymorphism in HFE is not associated with amyotrophic lateral sclerosis. Neurobiol Aging. 2012; 34(5):1517.e5-7. DOI: 10.1016/j.neurobiolaging.2012.07.020. View

4.
Shaw P . Molecular and cellular pathways of neurodegeneration in motor neurone disease. J Neurol Neurosurg Psychiatry. 2005; 76(8):1046-57. PMC: 1739758. DOI: 10.1136/jnnp.2004.048652. View

5.
Hadzhieva M, Kirches E, Wilisch-Neumann A, Pachow D, Wallesch M, Schoenfeld P . Dysregulation of iron protein expression in the G93A model of amyotrophic lateral sclerosis. Neuroscience. 2012; 230:94-101. DOI: 10.1016/j.neuroscience.2012.11.021. View