» Articles » PMID: 25093397

Neuronal or Hemodynamic? Grappling with the Functional MRI Signal

Overview
Journal Brain Connect
Specialty Neurology
Date 2014 Aug 6
PMID 25093397
Citations 13
Authors
Affiliations
Soon will be listed here.
Abstract

Magnetic resonance imaging (MRI) and functional MRI (fMRI) continue to advance because creative physicists, engineers, neuroscientists, clinicians, and physiologists find new ways for extracting more information from the signal. Innovations in pulse sequence design, paradigm design, and processing methods have advanced the field and firmly established fMRI as a cornerstone for understanding the human brain. In this article, the field of fMRI is described through consideration of the central problem of separating hemodynamic from neuronal information. Discussed here are examples of how pulse sequences, activation paradigms, and processing methods are integrated such that novel, high-quality information can be obtained. Examples include the extraction of information such as activation onset latency, metabolic rate, neuronal adaptation, vascular patency, vessel diameter, vigilance, and subvoxel activation. Experimental measures include time series latency, hemodynamic shape, MR phase, multivoxel patterns, ratios of activation-related R2* to R2, metabolic rate changes, fluctuation correlations and frequencies, changes in fluctuation correlations and frequencies over time, resting correlation states, echo time dependence, and more.

Citing Articles

Concussion: Beyond the Cascade.

Neumann K, Broshek D, Newman B, Druzgal T, Kundu B, Resch J Cells. 2023; 12(17).

PMID: 37681861 PMC: 10487087. DOI: 10.3390/cells12172128.


Parameter Sensitivity and Experimental Validation for Fractional-Order Dynamical Modeling of Neurovascular Coupling.

Belkhatir Z, Alhazmi F, Bahloul M, Laleg-Kirati T IEEE Open J Eng Med Biol. 2023; 3:69-77.

PMID: 36860497 PMC: 9970046. DOI: 10.1109/OJEMB.2022.3167281.


Voxel-Wise Linearity Analysis of Increments and Decrements in BOLD Responses in Human Visual Cortex Using a Contrast Adaptation Paradigm.

Lin Y, Zhou X, Naya Y, Gardner J, Sun P Front Hum Neurosci. 2021; 15:541314.

PMID: 34531731 PMC: 8439421. DOI: 10.3389/fnhum.2021.541314.


Statistical power or more precise insights into neuro-temporal dynamics? Assessing the benefits of rapid temporal sampling in fMRI.

Dowdle L, Ghose G, Chen C, Ugurbil K, Yacoub E, Vizioli L Prog Neurobiol. 2021; 207:102171.

PMID: 34492308 PMC: 8688272. DOI: 10.1016/j.pneurobio.2021.102171.


How Human Single-Neuron Recordings Can Help Us Understand Cognition: Insights from Memory Studies.

Kubska Z, Kaminski J Brain Sci. 2021; 11(4).

PMID: 33808391 PMC: 8067009. DOI: 10.3390/brainsci11040443.


References
1.
Boxerman J, Bandettini P, Kwong K, Baker J, Davis T, Rosen B . The intravascular contribution to fMRI signal change: Monte Carlo modeling and diffusion-weighted studies in vivo. Magn Reson Med. 1995; 34(1):4-10. DOI: 10.1002/mrm.1910340103. View

2.
Menon R, Luknowsky D, Gati J . Mental chronometry using latency-resolved functional MRI. Proc Natl Acad Sci U S A. 1998; 95(18):10902-7. PMC: 27993. DOI: 10.1073/pnas.95.18.10902. View

3.
Logothetis N, Eschenko O, Murayama Y, Augath M, Steudel T, Evrard H . Hippocampal-cortical interaction during periods of subcortical silence. Nature. 2012; 491(7425):547-53. DOI: 10.1038/nature11618. View

4.
Kundu P, Brenowitz N, Voon V, Worbe Y, Vertes P, Inati S . Integrated strategy for improving functional connectivity mapping using multiecho fMRI. Proc Natl Acad Sci U S A. 2013; 110(40):16187-92. PMC: 3791700. DOI: 10.1073/pnas.1301725110. View

5.
Bandettini P, Jesmanowicz A, Wong E, Hyde J . Processing strategies for time-course data sets in functional MRI of the human brain. Magn Reson Med. 1993; 30(2):161-73. DOI: 10.1002/mrm.1910300204. View