» Articles » PMID: 25080924

Lung Ventilation Injures Areas with Discrete Alveolar Flooding, in a Surface Tension-dependent Fashion

Overview
Date 2014 Aug 2
PMID 25080924
Citations 21
Authors
Affiliations
Soon will be listed here.
Abstract

With proteinaceous-liquid flooding of discrete alveoli, a model of the edema pattern in the acute respiratory distress syndrome, lung inflation over expands aerated alveoli adjacent to flooded alveoli. Theoretical considerations suggest that the overexpansion may be proportional to surface tension, T. Yet recent evidence indicates proteinaceous edema liquid may not elevate T. Thus whether the overexpansion is injurious is not known. Here, working in the isolated, perfused rat lung, we quantify fluorescence movement from the vasculature to the alveolar liquid phase as a measure of overdistension injury to the alveolar-capillary barrier. We label the perfusate with fluorescence; micropuncture a surface alveolus and instill a controlled volume of nonfluorescent liquid to obtain a micropunctured-but-aerated region (control group) or a region with discrete alveolar flooding; image the region at a constant transpulmonary pressure of 5 cmH2O; apply five ventilation cycles with a positive end-expiratory pressure of 0-20 cmH2O and tidal volume of 6 or 12 ml/kg; return the lung to a constant transpulmonary pressure of 5 cmH2O; and image for an additional 10 min. In aerated areas, ventilation is not injurious. With discrete alveolar flooding, all ventilation protocols cause sustained injury. Greater positive end-expiratory pressure or tidal volume increases injury. Furthermore, we determine T and find injury increases with T. Inclusion of either plasma proteins or Survanta in the flooding liquid does not alter T or injury. Inclusion of 2.7-10% albumin and 1% Survanta together, however, lowers T and injury. Contrary to expectation, albumin inclusion in our model facilitates exogenous surfactant activity.

Citing Articles

Acinar micromechanics in health and lung injury: what we have learned from quantitative morphology.

Knudsen L, Hummel B, Wrede C, Zimmermann R, Perlman C, Smith B Front Physiol. 2023; 14:1142221.

PMID: 37025383 PMC: 10070844. DOI: 10.3389/fphys.2023.1142221.


Lung Ultrasound Induction of Pulmonary Capillary Hemorrhage in Neonatal Swine.

Miller D, Dou C, Dong Z Ultrasound Med Biol. 2022; 48(11):2276-2291.

PMID: 36030131 PMC: 9942946. DOI: 10.1016/j.ultrasmedbio.2022.06.020.


Neutrophil-Derived IL-17 Promotes Ventilator-Induced Lung Injury p38 MAPK/MCP-1 Pathway Activation.

Liao X, Zhang W, Dai H, Jing R, Ye M, Ge W Front Immunol. 2022; 12:768813.

PMID: 34975857 PMC: 8714799. DOI: 10.3389/fimmu.2021.768813.


Perioperative Pulmonary Atelectasis: Part I. Biology and Mechanisms.

Zeng C, Lagier D, Lee J, Melo M Anesthesiology. 2021; 136(1):181-205.

PMID: 34499087 PMC: 9869183. DOI: 10.1097/ALN.0000000000003943.


Intravenous sulforhodamine B reduces alveolar surface tension, improves oxygenation, and reduces ventilation injury in a respiratory distress model.

Wu Y, Nguyen T, Perlman C J Appl Physiol (1985). 2020; 130(5):1305-1316.

PMID: 33211596 PMC: 8354824. DOI: 10.1152/japplphysiol.00421.2020.


References
1.
Brower R, Matthay M, Morris A, Schoenfeld D, Thompson B, Wheeler A . Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000; 342(18):1301-8. DOI: 10.1056/NEJM200005043421801. View

2.
Hussein O, Walters B, Stroetz R, Valencia P, McCall D, Hubmayr R . Biophysical determinants of alveolar epithelial plasma membrane wounding associated with mechanical ventilation. Am J Physiol Lung Cell Mol Physiol. 2013; 305(7):L478-84. PMC: 3798764. DOI: 10.1152/ajplung.00437.2012. View

3.
Wang P, Ashino Y, Ichimura H, Bhattacharya J . Rapid alveolar liquid removal by a novel convective mechanism. Am J Physiol Lung Cell Mol Physiol. 2001; 281(6):L1327-34. DOI: 10.1152/ajplung.2001.281.6.L1327. View

4.
Mercer R, Laco J, Crapo J . Three-dimensional reconstruction of alveoli in the rat lung for pressure-volume relationships. J Appl Physiol (1985). 1987; 62(4):1480-7. DOI: 10.1152/jappl.1987.62.4.1480. View

5.
Perlman C, Wu Y . In situ determination of alveolar septal strain, stress and effective Young's modulus: an experimental/computational approach. Am J Physiol Lung Cell Mol Physiol. 2014; 307(4):L302-10. PMC: 4137161. DOI: 10.1152/ajplung.00106.2014. View