» Articles » PMID: 25071475

Claustrum Projections to Prefrontal Cortex in the Capuchin Monkey (Cebus Apella)

Overview
Specialty Neurology
Date 2014 Jul 30
PMID 25071475
Citations 24
Authors
Affiliations
Soon will be listed here.
Abstract

We examined the pattern of retrograde tracer distribution in the claustrum following intracortical injections into the frontal pole (area 10), and in dorsal (area 9), and ventral lateral (area 12) regions of the rostral prefrontal cortex in the tufted capuchin monkey (Cebus apella). The resulting pattern of labeled cells was assessed in relation to the three-dimensional geometry of the claustrum, as well as recent reports of claustrum-prefrontal connections in other primates. Claustrum-prefrontal projections were extensive, and largely concentrated in the ventral half of the claustrum, especially in the rostral 2/3 of the nucleus. Our data are consistent with a topographic arrangement of claustrum-cortical connections in which prefrontal and association cortices receive connections largely from the rostral and medial claustrum. Comparative aspects of claustrum-prefrontal topography across primate species and the implications of claustrum connectivity for understanding of cortical functional networks are explored, and we hypothesize that the claustrum may play a role in controlling or switching between resting state and task-associated cortical networks.

Citing Articles

Involvement of the claustrum in the cortico-basal ganglia circuitry: connectional study in the non-human primate.

Borra E, Ballestrazzi G, Biancheri D, Caminiti R, Luppino G Brain Struct Funct. 2024; 229(5):1143-1164.

PMID: 38615290 PMC: 11147942. DOI: 10.1007/s00429-024-02784-6.


Pathological claustrum activity drives aberrant cognitive network processing in human chronic pain.

Stewart B, Keaser M, Lee H, Margerison S, Cormie M, Moayedi M bioRxiv. 2023; .

PMID: 37961503 PMC: 10635040. DOI: 10.1101/2023.11.01.564054.


Regional and cell-type-specific afferent and efferent projections of the mouse claustrum.

Wang Q, Wang Y, Kuo H, Xie P, Kuang X, Hirokawa K Cell Rep. 2023; 42(2):112118.

PMID: 36774552 PMC: 10415534. DOI: 10.1016/j.celrep.2023.112118.


A role for the claustrum in cognitive control.

Madden M, Stewart B, White M, Krimmel S, Qadir H, Barrett F Trends Cogn Sci. 2022; 26(12):1133-1152.

PMID: 36192309 PMC: 9669149. DOI: 10.1016/j.tics.2022.09.006.


Automatic Segmentation of the Dorsal Claustrum in Humans Using in vivo High-Resolution MRI.

Berman S, Schurr R, Atlan G, Citri A, Mezer A Cereb Cortex Commun. 2021; 1(1):tgaa062.

PMID: 34296125 PMC: 8153060. DOI: 10.1093/texcom/tgaa062.


References
1.
Milardi D, Bramanti P, Milazzo C, Finocchio G, Arrigo A, Santoro G . Cortical and subcortical connections of the human claustrum revealed in vivo by constrained spherical deconvolution tractography. Cereb Cortex. 2013; 25(2):406-14. DOI: 10.1093/cercor/bht231. View

2.
Damoiseaux J, Beckmann C, Arigita E, Barkhof F, Scheltens P, Stam C . Reduced resting-state brain activity in the "default network" in normal aging. Cereb Cortex. 2007; 18(8):1856-64. DOI: 10.1093/cercor/bhm207. View

3.
Burman K, Rosa M . Architectural subdivisions of medial and orbital frontal cortices in the marmoset monkey (Callithrix jacchus). J Comp Neurol. 2009; 514(1):11-29. DOI: 10.1002/cne.21976. View

4.
Gallyas F . Silver staining of myelin by means of physical development. Neurol Res. 1979; 1(2):203-9. DOI: 10.1080/01616412.1979.11739553. View

5.
Vertes R . Differential projections of the infralimbic and prelimbic cortex in the rat. Synapse. 2003; 51(1):32-58. DOI: 10.1002/syn.10279. View