Ramanathan A, Feng S, Kumar A, Thummalapalli S, Sobczak M, R Bick L
ACS Appl Nano Mater. 2025; 7(24):27998-28007.
PMID: 39744148
PMC: 11686463.
DOI: 10.1021/acsanm.4c01673.
Koya A, Li W
Nanophotonics. 2024; 12(12):2103-2113.
PMID: 39634047
PMC: 11501418.
DOI: 10.1515/nanoph-2023-0196.
Jin Y, Oh J, Choi W, Kim M
Nanophotonics. 2024; 11(9):2149-2158.
PMID: 39633944
PMC: 11501628.
DOI: 10.1515/nanoph-2021-0653.
Satheesh A, Yang C, Gaidhane V, Sood N, Goel N, Bozkurt S
Nano Lett. 2024; 24(10):3157-3164.
PMID: 38278135
PMC: 10941250.
DOI: 10.1021/acs.nanolett.3c05133.
Yamada R, Kuwahara M, Kuwahara S
Nanoscale Adv. 2023; 5(21):5780-5785.
PMID: 37881711
PMC: 10597547.
DOI: 10.1039/d3na00683b.
Nanoscale thermoplasmonic welding.
Wang L, Feng Y, Li Z, Liu G
iScience. 2022; 25(6):104422.
PMID: 35663015
PMC: 9156941.
DOI: 10.1016/j.isci.2022.104422.
Surface-Plasmon-Assisted Growth, Reshaping and Transformation of Nanomaterials.
Zhang C, Qi J, Li Y, Han Q, Gao W, Wang Y
Nanomaterials (Basel). 2022; 12(8).
PMID: 35458037
PMC: 9026154.
DOI: 10.3390/nano12081329.
Plasmonic Superstructure Arrays Fabricated by Laser Near-Field Reduction for Wide-Range SERS Analysis of Fluorescent Materials.
Bai S, Hu A, Hu Y, Ma Y, Obata K, Sugioka K
Nanomaterials (Basel). 2022; 12(6).
PMID: 35335783
PMC: 8950659.
DOI: 10.3390/nano12060970.
Surface-enhanced Raman spectroscopy: benefits, trade-offs and future developments.
Perez-Jimenez A, Lyu D, Lu Z, Liu G, Ren B
Chem Sci. 2021; 11(18):4563-4577.
PMID: 34122914
PMC: 8159237.
DOI: 10.1039/d0sc00809e.
Plasmon-Enhanced Photothermal and Optomechanical Deformations of a Gold Nanoparticle.
Liaw J, Liu G, Ku Y, Kuo M
Nanomaterials (Basel). 2020; 10(9).
PMID: 32962265
PMC: 7558075.
DOI: 10.3390/nano10091881.
Gold Nanoparticle Self-Aggregation on Surface with 1,6-Hexanedithiol Functionalization.
Stetsenko M, Margitych T, Kryvyi S, Maksimenko L, Hassan A, Filonenko S
Nanomaterials (Basel). 2020; 10(3).
PMID: 32168942
PMC: 7153467.
DOI: 10.3390/nano10030512.
Present and Future of Surface-Enhanced Raman Scattering.
Langer J, Jimenez de Aberasturi D, Aizpurua J, Alvarez-Puebla R, Auguie B, Baumberg J
ACS Nano. 2019; 14(1):28-117.
PMID: 31478375
PMC: 6990571.
DOI: 10.1021/acsnano.9b04224.
Quantitative Nanoplasmonics.
Park J, Jung Y, Kim M, Nam J
ACS Cent Sci. 2018; 4(10):1303-1314.
PMID: 30410968
PMC: 6202639.
DOI: 10.1021/acscentsci.8b00423.
Near-Infrared Plasmonic Assemblies of Gold Nanoparticles with Multimodal Function for Targeted Cancer Theragnosis.
Kim S, Lee B, Lee H, Jo S, Kim H, Won Y
Sci Rep. 2017; 7(1):17327.
PMID: 29229979
PMC: 5725556.
DOI: 10.1038/s41598-017-17714-2.
Wavelength-Dependent Plasmon-Mediated Coalescence of Two Gold Nanorods.
Liaw J, Lin W, Kuo M
Sci Rep. 2017; 7:46095.
PMID: 28440793
PMC: 5404630.
DOI: 10.1038/srep46095.
Single-Crystalline Gold Nanowires Synthesized from Light-Driven Oriented Attachment and Plasmon-Mediated Self-Assembly of Gold Nanorods or Nanoparticles.
Yu S, Gunawan H, Tsai S, Chen Y, Yen T, Liaw J
Sci Rep. 2017; 7:44680.
PMID: 28300218
PMC: 5353694.
DOI: 10.1038/srep44680.
Intracellular pH-Induced Tip-to-Tip Assembly of Gold Nanorods for Enhanced Plasmonic Photothermal Therapy.
Ahijado-Guzman R, Gonzalez-Rubio G, Izquierdo J, Banares L, Lopez-Montero I, Calzado-Martin A
ACS Omega. 2016; 1(3):388-395.
PMID: 27713930
PMC: 5046174.
DOI: 10.1021/acsomega.6b00184.
Reshaping, Fragmentation, and Assembly of Gold Nanoparticles Assisted by Pulse Lasers.
Gonzalez-Rubio G, Guerrero-Martinez A, Liz-Marzan L
Acc Chem Res. 2016; 49(4):678-86.
PMID: 27035211
PMC: 4838951.
DOI: 10.1021/acs.accounts.6b00041.
Light manipulation of nanoparticles in arrays of topological defects.
Kasyanyuk D, Pagliusi P, Mazzulla A, Reshetnyak V, Reznikov Y, Provenzano C
Sci Rep. 2016; 6:20742.
PMID: 26882826
PMC: 4756690.
DOI: 10.1038/srep20742.
From tunable core-shell nanoparticles to plasmonic drawbridges: Active control of nanoparticle optical properties.
Byers C, Zhang H, Swearer D, Yorulmaz M, Hoener B, Huang D
Sci Adv. 2015; 1(11):e1500988.
PMID: 26665175
PMC: 4672758.
DOI: 10.1126/sciadv.1500988.