» Articles » PMID: 25065385

Threading Plasmonic Nanoparticle Strings with Light

Overview
Journal Nat Commun
Specialty Biology
Date 2014 Jul 29
PMID 25065385
Citations 23
Authors
Affiliations
Soon will be listed here.
Abstract

Nanomaterials find increasing application in communications, renewable energies, electronics and sensing. Because of its unsurpassed speed and highly tuneable interaction with matter, using light to guide the self-assembly of nanomaterials can open up novel technological frontiers. However, large-scale light-induced assembly remains challenging. Here we demonstrate an efficient route to nano-assembly through plasmon-induced laser threading of gold nanoparticle strings, producing conducting threads 12±2 nm wide. This precision is achieved because the nanoparticles are first chemically assembled into chains with rigidly controlled separations of 0.9 nm primed for re-sculpting. Laser-induced threading occurs on a large scale in water, tracked via a new optical resonance in the near-infrared corresponding to a hybrid chain/rod-like charge transfer plasmon. The nano-thread width depends on the chain mode resonances, the nanoparticle size, the chain length and the peak laser power, enabling nanometre-scale tuning of the optical and conducting properties of such nanomaterials.

Citing Articles

Light-Driven Nanonetwork Assembly of Gold Nanoparticles via 3D Printing for Optical Sensors.

Ramanathan A, Feng S, Kumar A, Thummalapalli S, Sobczak M, R Bick L ACS Appl Nano Mater. 2025; 7(24):27998-28007.

PMID: 39744148 PMC: 11686463. DOI: 10.1021/acsanm.4c01673.


Multifunctional charge transfer plasmon resonance sensors.

Koya A, Li W Nanophotonics. 2024; 12(12):2103-2113.

PMID: 39634047 PMC: 11501418. DOI: 10.1515/nanoph-2023-0196.


Spatio-spectral decomposition of complex eigenmodes in subwavelength nanostructures through transmission matrix analysis.

Jin Y, Oh J, Choi W, Kim M Nanophotonics. 2024; 11(9):2149-2158.

PMID: 39633944 PMC: 11501628. DOI: 10.1515/nanoph-2021-0653.


Unconventional Breathing Currents Far beyond the Quantum Tunneling Distances in Large-Gapped Nanoplasmonic Systems.

Satheesh A, Yang C, Gaidhane V, Sood N, Goel N, Bozkurt S Nano Lett. 2024; 24(10):3157-3164.

PMID: 38278135 PMC: 10941250. DOI: 10.1021/acs.nanolett.3c05133.


Three-dimensional building of anisotropic gold nanoparticles under confinement in submicron capsules.

Yamada R, Kuwahara M, Kuwahara S Nanoscale Adv. 2023; 5(21):5780-5785.

PMID: 37881711 PMC: 10597547. DOI: 10.1039/d3na00683b.


References
1.
Anker J, Hall W, Lyandres O, Shah N, Zhao J, Van Duyne R . Biosensing with plasmonic nanosensors. Nat Mater. 2008; 7(6):442-53. DOI: 10.1038/nmat2162. View

2.
Niederberger M, Colfen H . Oriented attachment and mesocrystals: non-classical crystallization mechanisms based on nanoparticle assembly. Phys Chem Chem Phys. 2006; 8(28):3271-87. DOI: 10.1039/b604589h. View

3.
Ko H, Singamaneni S, Tsukruk V . Nanostructured surfaces and assemblies as SERS media. Small. 2008; 4(10):1576-99. DOI: 10.1002/smll.200800337. View

4.
Kim T, Lee K, Gong M, Joo S . Control of gold nanoparticle aggregates by manipulation of interparticle interaction. Langmuir. 2005; 21(21):9524-8. DOI: 10.1021/la0504560. View

5.
Taylor R, Lee T, Scherman O, Esteban R, Aizpurua J, Huang F . Precise subnanometer plasmonic junctions for SERS within gold nanoparticle assemblies using cucurbit[n]uril "glue". ACS Nano. 2011; 5(5):3878-87. DOI: 10.1021/nn200250v. View