» Articles » PMID: 25009743

Risk Factors for Central and Branch Retinal Vein Occlusion: a Meta-analysis of Published Clinical Data

Overview
Journal J Ophthalmol
Publisher Wiley
Specialty Ophthalmology
Date 2014 Jul 11
PMID 25009743
Citations 123
Authors
Affiliations
Soon will be listed here.
Abstract

Retinal vein occlusion (RVO) is a major cause of vision loss. Of the two main types of RVO, branch retinal vein occlusion (BRVO) is 4 to 6 times more prevalent than central retinal vein occlusion (CRVO). A basic risk factor for RVO is advancing age. Further risk factors include systemic conditions like hypertension, arteriosclerosis, diabetes mellitus, hyperlipidemia, vascular cerebral stroke, blood hyperviscosity, and thrombophilia. A strong risk factor for RVO is the metabolic syndrome (hypertension, diabetes mellitus, and hyperlipidemia). Individuals with end-organ damage caused by diabetes mellitus and hypertension have greatly increased risk for RVO. Socioeconomic status seems to be a risk factor too. American blacks are more often diagnosed with RVO than non-Hispanic whites. Females are, according to some studies, at lower risk than men. The role of thrombophilic risk factors in RVO is still controversial. Congenital thrombophilic diseases like factor V Leiden mutation, hyperhomocysteinemia and anticardiolipin antibodies increase the risk of RVO. Cigarette smoking also increases the risk of RVO as do systemic inflammatory conditions like vasculitis and Behcet disease. Ophthalmic risk factors for RVO are ocular hypertension and glaucoma, higher ocular perfusion pressure, and changes in the retinal arteries.

Citing Articles

Retinal vein occlusion risk prediction without fundus examination using a no-code machine learning tool for tabular data: a nationwide cross-sectional study from South Korea.

Yu N, Shin D, Ryu I, Yoo T, Koh K BMC Med Inform Decis Mak. 2025; 25(1):118.

PMID: 40055729 PMC: 11889835. DOI: 10.1186/s12911-025-02950-8.


The Diagnosis and Treatment of Branch Retinal Vein Occlusions: An Update.

Darabus D, Darabus R, Munteanu M Biomedicines. 2025; 13(1).

PMID: 39857689 PMC: 11763247. DOI: 10.3390/biomedicines13010105.


Predicting branch retinal vein occlusion development using multimodal deep learning and pre-onset fundus hemisection images.

Choi E, Kim D, Kim J, Kim E, Lee H, Yeo J Sci Rep. 2025; 15(1):2729.

PMID: 39837962 PMC: 11751167. DOI: 10.1038/s41598-025-85777-7.


Comparing the Doppler flow parameters of orbital vessels among healthy nonsmokers, diabetic nonsmokers, and diabetic smokers visiting a tertiary health-care center.

Mahesh B, Manjegowda N Taiwan J Ophthalmol. 2025; 14(4):594-601.

PMID: 39803404 PMC: 11717339. DOI: 10.4103/tjo.TJO-D-23-00186.


Endothelial Glycocalyx Damage and Arterial Thickness in Patients with Retinal Vein Occlusion (RVO).

Korakas E, Pavlidis G, Lampsas S, Agapitou C, Risi-Koziona A, Kountouri A J Clin Med. 2025; 14(1.

PMID: 39797194 PMC: 11721581. DOI: 10.3390/jcm14010111.


References
1.
Christoffersen N, Larsen M . Pathophysiology and hemodynamics of branch retinal vein occlusion. Ophthalmology. 1999; 106(11):2054-62. DOI: 10.1016/S0161-6420(99)90483-9. View

2.
Hayreh S, Zimmerman M . Branch retinal vein occlusion: natural history of visual outcome. JAMA Ophthalmol. 2013; 132(1):13-22. DOI: 10.1001/jamaophthalmol.2013.5515. View

3.
Ehlers J, Fekrat S . Retinal vein occlusion: beyond the acute event. Surv Ophthalmol. 2011; 56(4):281-99. DOI: 10.1016/j.survophthal.2010.11.006. View

4.
Jefferies P, Clemett R, Day T . An anatomical study of retinal arteriovenous crossings and their role in the pathogenesis of retinal branch vein occlusions. Aust N Z J Ophthalmol. 1993; 21(4):213-7. DOI: 10.1111/j.1442-9071.1993.tb00959.x. View

5.
Sofi F, Marcucci R, Bolli P, Giambene B, Sodi A, Fedi S . Low vitamin B6 and folic acid levels are associated with retinal vein occlusion independently of homocysteine levels. Atherosclerosis. 2007; 198(1):223-7. DOI: 10.1016/j.atherosclerosis.2007.09.009. View