» Articles » PMID: 25009470

Revisiting Enigmatic Cortical Calretinin-expressing Interneurons

Overview
Journal Front Neuroanat
Date 2014 Jul 11
PMID 25009470
Citations 51
Authors
Affiliations
Soon will be listed here.
Abstract

Cortical calretinin (CR)-expressing interneurons represent a heterogeneous subpopulation of about 10-30% of GABAergic interneurons, which altogether total ca. 12-20% of all cortical neurons. In the rodent neocortex, CR cells display different somatodendritic morphologies ranging from bipolar to multipolar but the bipolar cells and their variations dominate. They are also diverse at the molecular level as they were shown to express numerous neuropeptides in different combinations including vasoactive intestinal polypeptide (VIP), cholecystokinin (CCK), neurokinin B (NKB) corticotrophin releasing factor (CRF), enkephalin (Enk) but also neuropeptide Y (NPY) and somatostatin (SOM) to a lesser extent. CR-expressing interneurons exhibit different firing behaviors such as adapting, bursting or irregular. They mainly originate from the caudal ganglionic eminence (CGE) but a subpopulation also derives from the dorsal part of the medial ganglionic eminence (MGE). Cortical GABAergic CR-expressing interneurons can be divided in two main populations: VIP-bipolar interneurons deriving from the CGE and SOM-Martinotti-like interneurons originating in the dorsal MGE. Although bipolar cells account for the majority of CR-expressing interneurons, the roles they play in cortical neuronal circuits and in the more general metabolic physiology of the brain remained elusive and enigmatic. The aim of this review is, firstly, to provide a comprehensive view of the morphological, molecular and electrophysiological features defining this cell type. We will, secondly, also summarize what is known about their place in the cortical circuit, their modulation by subcortical afferents and the functional roles they might play in neuronal processing and energy metabolism.

Citing Articles

GABAergic Progenitor Cell Graft Rescues Cognitive Deficits in Fragile X Syndrome Mice.

Wang C, Liu J, Su L, Wang X, Bian Y, Wang Z Adv Sci (Weinh). 2025; 12(10):e2411972.

PMID: 39823534 PMC: 11904963. DOI: 10.1002/advs.202411972.


Basal forebrain innervation of the amygdala: an anatomical and computational exploration.

Tuna T, Banks T, Glickert G, Sevinc C, Nair S, Unal G Brain Struct Funct. 2025; 230(1):30.

PMID: 39805973 PMC: 11729089. DOI: 10.1007/s00429-024-02886-1.


Characterization of GABAergic marker expression in prefrontal cortex in dexamethasone induced depression/anxiety model.

Ling Hu , Qiu M, Fan W, Wang W, Liu S, Liu X Front Endocrinol (Lausanne). 2024; 15:1433026.

PMID: 39483976 PMC: 11524930. DOI: 10.3389/fendo.2024.1433026.


Cell type specification and diversity in subpallial organoids.

Pavon N, Sun Y, Pak C Front Genet. 2024; 15:1440583.

PMID: 39391063 PMC: 11465425. DOI: 10.3389/fgene.2024.1440583.


Both GEF domains of the autism and developmental epileptic encephalopathy-associated Trio protein are required for proper tangential migration of GABAergic interneurons.

Eid L, Lokmane L, Raju P, Tene Tadoum S, Jiang X, Toulouse K Mol Psychiatry. 2024; .

PMID: 39300136 DOI: 10.1038/s41380-024-02742-y.


References
1.
Glausier J, Khan Z, Muly E . Dopamine D1 and D5 receptors are localized to discrete populations of interneurons in primate prefrontal cortex. Cereb Cortex. 2008; 19(8):1820-34. PMC: 2705695. DOI: 10.1093/cercor/bhn212. View

2.
Gilmor M, Nash N, Roghani A, EDWARDS R, Yi H, Hersch S . Expression of the putative vesicular acetylcholine transporter in rat brain and localization in cholinergic synaptic vesicles. J Neurosci. 1996; 16(7):2179-90. PMC: 6578528. View

3.
Butt S, Sousa V, Fuccillo M, Hjerling-Leffler J, Miyoshi G, Kimura S . The requirement of Nkx2-1 in the temporal specification of cortical interneuron subtypes. Neuron. 2008; 59(5):722-32. PMC: 2562525. DOI: 10.1016/j.neuron.2008.07.031. View

4.
Hioki H, Okamoto S, Konno M, Kameda H, Sohn J, Kuramoto E . Cell type-specific inhibitory inputs to dendritic and somatic compartments of parvalbumin-expressing neocortical interneuron. J Neurosci. 2013; 33(2):544-55. PMC: 6704929. DOI: 10.1523/JNEUROSCI.2255-12.2013. View

5.
Liu X, Li C, Falck J, Harder D, Koehler R . Relative contribution of cyclooxygenases, epoxyeicosatrienoic acids, and pH to the cerebral blood flow response to vibrissal stimulation. Am J Physiol Heart Circ Physiol. 2011; 302(5):H1075-85. PMC: 3311453. DOI: 10.1152/ajpheart.00794.2011. View