» Articles » PMID: 25008552

Control Region Length Dynamics Potentially Drives Amino Acid Evolution in Tarsier Mitochondrial Genomes

Overview
Journal J Mol Evol
Specialty Biochemistry
Date 2014 Jul 11
PMID 25008552
Citations 6
Authors
Affiliations
Soon will be listed here.
Abstract

Patterns and processes of molecular evolution critically influence inferences in phylogeny and phylogeography. Within primates, a shift in evolutionary rates has been identified as the rationale for contrasting findings from mitochondrial and nuclear DNA studies as to the position of Tarsius. While the latter now seems settled, we sequenced complete mitochondrial genomes of three Sulawesi tarsiers (Tarsius dentatus, T. lariang, and T. wallacei) and analyzed substitution rates among tarsiers and other primates to infer driving processes of molecular evolution. We found substantial length polymorphism of the D-loop within tarsier individuals, but little variation of predominant lengths among them, regardless of species. Length variation was due to repetitive elements in the CSB domain-minisatellite motifs of 35 bp length and microsatellite motifs of 6 bp length. Amino acid evolutionary rates were second highest among major primate taxa relative to nucleotide substitution rates. We observed many radical possibly function-altering amino acid changes that were rarely driven by positive selection and thus potentially slightly deleterious or neutral. We hypothesize that the observed pattern of an increased amino acid evolutionary rate in tarsier mitochondrial genomes may be caused by hitchhiking of slightly deleterious mutations with favored D-loop length variants selected for maximizing replication success within the cell or the mitochondrion.

Citing Articles

A new type of tandem repeats in Myotis petax (Chiroptera, Vespertilionidae) mitochondrial control region.

Gorobeyko U, Sheremetyeva I, Kazakov D, Guskov V Mol Biol Rep. 2023; 50(6):5137-5146.

PMID: 37115485 DOI: 10.1007/s11033-023-08468-4.


Small, odd and old: The mysterious is the most basal Sulawesi tarsier.

Hagemann L, Grow N, Bohr Y, Perwitasari-Farajallah D, Duma Y, Gursky S Biol Lett. 2022; 18(3):20210642.

PMID: 35350878 PMC: 8965421. DOI: 10.1098/rsbl.2021.0642.


The pioneering role of PRDM9 indel mutations in tarsier evolution.

Heerschop S, Zischler H, Merker S, Perwitasari-Farajallah D, Driller C Sci Rep. 2016; 6:34618.

PMID: 27698394 PMC: 5048142. DOI: 10.1038/srep34618.


Positive selection on panpulmonate mitogenomes provide new clues on adaptations to terrestrial life.

Romero P, Weigand A, Pfenninger M BMC Evol Biol. 2016; 16(1):164.

PMID: 27549326 PMC: 4994307. DOI: 10.1186/s12862-016-0735-8.


Stop and Go - Waves of Tarsier Dispersal Mirror the Genesis of Sulawesi Island.

Driller C, Merker S, Perwitasari-Farajallah D, Sinaga W, Anggraeni N, Zischler H PLoS One. 2015; 10(11):e0141212.

PMID: 26559527 PMC: 4641617. DOI: 10.1371/journal.pone.0141212.


References
1.
Andrews T, Jermiin L, Easteal S . Accelerated evolution of cytochrome b in simian primates: adaptive evolution in concert with other mitochondrial proteins?. J Mol Evol. 1998; 47(3):249-57. DOI: 10.1007/pl00006382. View

2.
Efstratiadis A, Posakony J, Maniatis T, Lawn R, OConnell C, Spritz R . The structure and evolution of the human beta-globin gene family. Cell. 1980; 21(3):653-68. DOI: 10.1016/0092-8674(80)90429-8. View

3.
Murphy W, Eizirik E, Johnson W, Zhang Y, Ryder O, OBrien S . Molecular phylogenetics and the origins of placental mammals. Nature. 2001; 409(6820):614-8. DOI: 10.1038/35054550. View

4.
Inoue J, Miya M, Tsukamoto K, Nishida M . Complete mitochondrial DNA sequence of Conger myriaster (Teleostei: Anguilliformes): novel gene order for vertebrate mitochondrial genomes and the phylogenetic implications for anguilliform families. J Mol Evol. 2001; 52(4):311-20. DOI: 10.1007/s002390010161. View

5.
Drummond A, Suchard M, Xie D, Rambaut A . Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol. 2012; 29(8):1969-73. PMC: 3408070. DOI: 10.1093/molbev/mss075. View