» Articles » PMID: 25005019

Escherichia [corrected] Coli Ribose Binding Protein Based Bioreporters Revisited

Overview
Journal Sci Rep
Specialty Science
Date 2014 Jul 10
PMID 25005019
Citations 7
Authors
Affiliations
Soon will be listed here.
Abstract

Bioreporter bacteria, i.e., strains engineered to respond to chemical exposure by production of reporter proteins, have attracted wide interest because of their potential to offer cheap and simple alternative analytics for specified compounds or conditions. Bioreporter construction has mostly exploited the natural variation of sensory proteins, but it has been proposed that computational design of new substrate binding properties could lead to completely novel detection specificities at very low affinities. Here we reconstruct a bioreporter system based on the native Escherichia coli ribose binding protein RbsB and one of its computationally designed variants, reported to be capable of binding 2,4,6-trinitrotoluene (TNT). Our results show in vivo reporter induction at 50 nM ribose, and a 125 nM affinity constant for in vitro ribose binding to RbsB. In contrast, the purified published TNT-binding variant did not bind TNT nor did TNT cause induction of the E. coli reporter system.

Citing Articles

Subcellular Localization Defects Characterize Ribose-Binding Mutant Proteins with New Ligand Properties in Escherichia coli.

Tavares D, van der Meer J Appl Environ Microbiol. 2021; 88(2):e0211721.

PMID: 34757821 PMC: 8788693. DOI: 10.1128/AEM.02117-21.


Ribose-Binding Protein Mutants With Improved Interaction Towards the Non-natural Ligand 1,3-Cyclohexanediol.

Tavares D, van der Meer J Front Bioeng Biotechnol. 2021; 9:705534.

PMID: 34368100 PMC: 8343135. DOI: 10.3389/fbioe.2021.705534.


Computational redesign of the Escherichia coli ribose-binding protein ligand binding pocket for 1,3-cyclohexanediol and cyclohexanol.

Tavares D, Reimer A, Roy S, Joublin A, Sentchilo V, van der Meer J Sci Rep. 2019; 9(1):16940.

PMID: 31729460 PMC: 6858440. DOI: 10.1038/s41598-019-53507-5.


Determination of Ligand Profiles for Solute Binding Proteins.

Fernandez M, Rico-Jimenez M, Ortega A, Daddaoua A, Garcia Garcia A, Martin-Mora D Int J Mol Sci. 2019; 20(20).

PMID: 31627455 PMC: 6829864. DOI: 10.3390/ijms20205156.


Probing chemotaxis activity in Escherichia coli using fluorescent protein fusions.

Roggo C, Carraro N, van der Meer J Sci Rep. 2019; 9(1):3845.

PMID: 30846802 PMC: 6405996. DOI: 10.1038/s41598-019-40655-x.


References
1.
Chu B, Vogel H . A structural and functional analysis of type III periplasmic and substrate binding proteins: their role in bacterial siderophore and heme transport. Biol Chem. 2011; 392(1-2):39-52. DOI: 10.1515/BC.2011.012. View

2.
Sticher P, Jaspers M, Stemmler K, Harms H, Zehnder A, van der Meer J . Development and characterization of a whole-cell bioluminescent sensor for bioavailable middle-chain alkanes in contaminated groundwater samples. Appl Environ Microbiol. 1997; 63(10):4053-60. PMC: 168716. DOI: 10.1128/aem.63.10.4053-4060.1997. View

3.
Mustafi N, Grunberger A, Kohlheyer D, Bott M, Frunzke J . The development and application of a single-cell biosensor for the detection of l-methionine and branched-chain amino acids. Metab Eng. 2012; 14(4):449-57. DOI: 10.1016/j.ymben.2012.02.002. View

4.
Srividhya K, Krishnaswamy S . A simulation model of Escherichia coli osmoregulatory switch using E-CELL system. BMC Microbiol. 2004; 4:44. PMC: 543474. DOI: 10.1186/1471-2180-4-44. View

5.
Grimm S, Salahshour S, Nygren P . Monitored whole gene in vitro evolution of an anti-hRaf-1 affibody molecule towards increased binding affinity. N Biotechnol. 2011; 29(5):534-42. DOI: 10.1016/j.nbt.2011.10.008. View