» Articles » PMID: 25004962

Automated Identification of Crystallographic Ligands Using Sparse-density Representations

Overview
Specialty Chemistry
Date 2014 Jul 10
PMID 25004962
Citations 11
Authors
Affiliations
Soon will be listed here.
Abstract

A novel procedure for the automatic identification of ligands in macromolecular crystallographic electron-density maps is introduced. It is based on the sparse parameterization of density clusters and the matching of the pseudo-atomic grids thus created to conformationally variant ligands using mathematical descriptors of molecular shape, size and topology. In large-scale tests on experimental data derived from the Protein Data Bank, the procedure could quickly identify the deposited ligand within the top-ranked compounds from a database of candidates. This indicates the suitability of the method for the identification of binding entities in fragment-based drug screening and in model completion in macromolecular structure determination.

Citing Articles

Ligand identification in CryoEM and X-ray maps using deep learning.

Karolczak J, Przybylowska A, Szewczyk K, Taisner W, Heumann J, Stowell M Bioinformatics. 2024; 41(1).

PMID: 39700427 PMC: 11709248. DOI: 10.1093/bioinformatics/btae749.


Automated identification of small molecules in cryo-electron microscopy data with density- and energy-guided evaluation.

Muenks A, Farrell D, Zhou G, DiMaio F bioRxiv. 2024; .

PMID: 39605546 PMC: 11601544. DOI: 10.1101/2024.11.20.623795.


Ligand Identification in CryoEM and X-ray Maps Using Deep Learning.

Karolczak J, Przybylowska A, Szewczyk K, Taisner W, Heumann J, Stowell M bioRxiv. 2024; .

PMID: 39257821 PMC: 11383698. DOI: 10.1101/2024.08.27.610022.


Crystal polymorphism in fragment-based lead discovery of ligands of the catalytic domain of UGGT, the glycoprotein folding quality control checkpoint.

Caputo A, Ibba R, Le Cornu J, Darlot B, Hensen M, Lipp C Front Mol Biosci. 2023; 9:960248.

PMID: 36589243 PMC: 9794592. DOI: 10.3389/fmolb.2022.960248.


Crystal structures of Rib2 deaminase: the functional mechanism involved in riboflavin biosynthesis.

Chen S, Ye L, Yen T, Zhu R, Li C, Chang S IUCrJ. 2021; 8(Pt 4):549-558.

PMID: 34258004 PMC: 8256712. DOI: 10.1107/S205225252100275X.


References
1.
Kleywegt G . Crystallographic refinement of ligand complexes. Acta Crystallogr D Biol Crystallogr. 2006; 63(Pt 1):94-100. PMC: 2483469. DOI: 10.1107/S0907444906022657. View

2.
Terwilliger T, Adams P, Moriarty N, Cohn J . Ligand identification using electron-density map correlations. Acta Crystallogr D Biol Crystallogr. 2006; 63(Pt 1):101-7. PMC: 2483487. DOI: 10.1107/S0907444906046233. View

3.
Muller Y . Unexpected features in the Protein Data Bank entries 3qd1 and 4i8e: the structural description of the binding of the serine-rich repeat adhesin GspB to host cell carbohydrate receptor is not a solved issue. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2013; 69(Pt 10):1071-6. PMC: 3792659. DOI: 10.1107/S1744309113014383. View

4.
Murshudov G, Skubak P, Lebedev A, Pannu N, Steiner R, Nicholls R . REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr D Biol Crystallogr. 2011; 67(Pt 4):355-67. PMC: 3069751. DOI: 10.1107/S0907444911001314. View

5.
Oldfield T . X-LIGAND: an application for the automated addition of flexible ligands into electron density. Acta Crystallogr D Biol Crystallogr. 2001; 57(Pt 5):696-705. DOI: 10.1107/s0907444901003894. View