Automated Identification of Crystallographic Ligands Using Sparse-density Representations
Overview
Authors
Affiliations
A novel procedure for the automatic identification of ligands in macromolecular crystallographic electron-density maps is introduced. It is based on the sparse parameterization of density clusters and the matching of the pseudo-atomic grids thus created to conformationally variant ligands using mathematical descriptors of molecular shape, size and topology. In large-scale tests on experimental data derived from the Protein Data Bank, the procedure could quickly identify the deposited ligand within the top-ranked compounds from a database of candidates. This indicates the suitability of the method for the identification of binding entities in fragment-based drug screening and in model completion in macromolecular structure determination.
Ligand identification in CryoEM and X-ray maps using deep learning.
Karolczak J, Przybylowska A, Szewczyk K, Taisner W, Heumann J, Stowell M Bioinformatics. 2024; 41(1).
PMID: 39700427 PMC: 11709248. DOI: 10.1093/bioinformatics/btae749.
Muenks A, Farrell D, Zhou G, DiMaio F bioRxiv. 2024; .
PMID: 39605546 PMC: 11601544. DOI: 10.1101/2024.11.20.623795.
Ligand Identification in CryoEM and X-ray Maps Using Deep Learning.
Karolczak J, Przybylowska A, Szewczyk K, Taisner W, Heumann J, Stowell M bioRxiv. 2024; .
PMID: 39257821 PMC: 11383698. DOI: 10.1101/2024.08.27.610022.
Caputo A, Ibba R, Le Cornu J, Darlot B, Hensen M, Lipp C Front Mol Biosci. 2023; 9:960248.
PMID: 36589243 PMC: 9794592. DOI: 10.3389/fmolb.2022.960248.
Crystal structures of Rib2 deaminase: the functional mechanism involved in riboflavin biosynthesis.
Chen S, Ye L, Yen T, Zhu R, Li C, Chang S IUCrJ. 2021; 8(Pt 4):549-558.
PMID: 34258004 PMC: 8256712. DOI: 10.1107/S205225252100275X.