Shaban N, El-Rashidy F, Adam A, Beltagy D, Ali A, Abde-Alaziz A
Sci Rep. 2023; 13(1):7703.
PMID: 37169856
PMC: 10175271.
DOI: 10.1038/s41598-023-34626-6.
Comita S, Rubeo C, Giordano M, Penna C, Pagliaro P
Biology (Basel). 2023; 12(2).
PMID: 36829584
PMC: 9953525.
DOI: 10.3390/biology12020308.
Buelli S, Perico L, Galbusera M, Abbate M, Morigi M, Novelli R
EBioMedicine. 2015; 2(5):456-66.
PMID: 26137589
PMC: 4485911.
DOI: 10.1016/j.ebiom.2015.03.003.
Martinez-Finley E, Gavin C, Aschner M, Gunter T
Free Radic Biol Med. 2013; 62:65-75.
PMID: 23395780
PMC: 3713115.
DOI: 10.1016/j.freeradbiomed.2013.01.032.
Shaban N, Masoud M, Mawlawi M, Awad D, Sadek O
J Physiol Biochem. 2012; 68(4):475-84.
PMID: 22467201
DOI: 10.1007/s13105-012-0160-4.
Age-related cellular copper dynamics in the fungal ageing model Podospora anserina and in ageing human fibroblasts.
Scheckhuber C, Grief J, Boilan E, Luce K, Debacq-Chainiaux F, Rittmeyer C
PLoS One. 2009; 4(3):e4919.
PMID: 19305496
PMC: 2654708.
DOI: 10.1371/journal.pone.0004919.
Differential permeabilization effects of Ca2+ and valinomycin on the inner and outer mitochondrial membranes as revealed by proteomics analysis of proteins released from mitochondria.
Yamada A, Yamamoto T, Yamazaki N, Yamashita K, Kataoka M, Nagata T
Mol Cell Proteomics. 2009; 8(6):1265-77.
PMID: 19218587
PMC: 2690487.
DOI: 10.1074/mcp.M800377-MCP200.
Characteristics and possible functions of mitochondrial Ca(2+) transport mechanisms.
Gunter T, Sheu S
Biochim Biophys Acta. 2009; 1787(11):1291-308.
PMID: 19161975
PMC: 2730425.
DOI: 10.1016/j.bbabio.2008.12.011.
Copper sensitizes the mitochondrial permeability transition to carboxytractyloside and oleate.
Garcia N, Zazueta C, Carrillo R, Correa F, Chavez E
Mol Cell Biochem. 2000; 209(1-2):119-23.
PMID: 10942209
DOI: 10.1023/a:1007151511817.
Cytochrome c-dependent activation of caspase-3 by tumor necrosis factor requires induction of the mitochondrial permeability transition.
Tafani M, Schneider T, Pastorino J, Farber J
Am J Pathol. 2000; 156(6):2111-21.
PMID: 10854232
PMC: 1850093.
DOI: 10.1016/S0002-9440(10)65082-1.
Perspectives on the mitochondrial multiple conductance channel.
Kinnally K, Lohret T, Campo M, Mannella C
J Bioenerg Biomembr. 1996; 28(2):115-23.
PMID: 9132409
DOI: 10.1007/BF02110641.
The irreversibility of inner mitochondrial membrane permeabilization by Ca2+ plus prooxidants is determined by the extent of membrane protein thiol cross-linking.
Castilho R, Kowaltowski A, Vercesi A
J Bioenerg Biomembr. 1996; 28(6):523-9.
PMID: 8953384
DOI: 10.1007/BF02110442.
Structure-function comparisons of the proapoptotic protein Bax in yeast and mammalian cells.
Zha H, Fisk H, Yaffe M, Mahajan N, Herman B, Reed J
Mol Cell Biol. 1996; 16(11):6494-508.
PMID: 8887678
PMC: 231651.
DOI: 10.1128/MCB.16.11.6494.
Mitochondrial control of nuclear apoptosis.
Zamzami N, Susin S, Marchetti P, Hirsch T, Gomez-Monterrey I, Castedo M
J Exp Med. 1996; 183(4):1533-44.
PMID: 8666911
PMC: 2192517.
DOI: 10.1084/jem.183.4.1533.
Triphenyltin as inductor of mitochondrial membrane permeability transition.
Zazueta C, Reyes-Vivas H, Bravo C, Pichardo J, Corona N, Chavez E
J Bioenerg Biomembr. 1994; 26(4):457-62.
PMID: 7844120
DOI: 10.1007/BF00762786.
Mitochondrial non-specific pores remain closed during cardiac ischaemia, but open upon reperfusion.
Griffiths E, Halestrap A
Biochem J. 1995; 307 ( Pt 1):93-8.
PMID: 7717999
PMC: 1136749.
DOI: 10.1042/bj3070093.
'Pore' formation is not required for the hydroperoxide-induced Ca2+ release from rat liver mitochondria.
Schlegel J, Schweizer M, Richter C
Biochem J. 1992; 285 ( Pt 1):65-9.
PMID: 1379041
PMC: 1132745.
DOI: 10.1042/bj2850065.