» Articles » PMID: 24999625

Spectroscopic Investigation of Local Mechanical Impedance of Living Cells

Overview
Journal PLoS One
Date 2014 Jul 8
PMID 24999625
Citations 5
Authors
Affiliations
Soon will be listed here.
Abstract

We studied nanoscale mechanical properties of PC12 living cells with a Force Feedback Microscope using two experimental approaches. The first one consists in measuring the local mechanical impedance of the cell membrane while simultaneously mapping the cell morphology at constant force. As the interaction force is increased, we observe the appearance of the sub-membrane cytoskeleton. We compare our findings with the outcome of other techniques. The second experimental approach consists in a spectroscopic investigation of the cell while varying the tip indentation into the membrane and consequently the applied force. At variance with conventional dynamic Atomic Force Microscopy techniques, here it is not mandatory to work at the first oscillation eigenmode of the cantilever: the excitation frequency of the tip can be chosen arbitrary leading then to new spectroscopic AFM techniques. We found in this way that the mechanical response of the PC12 cell membrane is found to be frequency dependent in the 1 kHz - 10 kHz range. In particular, we observe that the damping coefficient consistently decreases when the excitation frequency is increased.

Citing Articles

A biophysical perspective on receptor-mediated virus entry with a focus on HIV.

Garcia I, Marsh M Biochim Biophys Acta Biomembr. 2019; 1862(6):183158.

PMID: 31863725 PMC: 7156917. DOI: 10.1016/j.bbamem.2019.183158.


Variation of Burkholderia cenocepacia cell wall morphology and mechanical properties during cystic fibrosis lung infection, assessed by atomic force microscopy.

Hassan A, Vitorino M, Robalo T, Rodrigues M, Sa-Correia I Sci Rep. 2019; 9(1):16118.

PMID: 31695169 PMC: 6834607. DOI: 10.1038/s41598-019-52604-9.


Direct measurement of the capillary condensation time of a water nanobridge.

Vitorino M, Vieira A, Marques C, Rodrigues M Sci Rep. 2018; 8(1):13848.

PMID: 30217989 PMC: 6138661. DOI: 10.1038/s41598-018-32021-0.


Custom AFM for X-ray beamlines: in situ biological investigations under physiological conditions.

Gumi-Audenis B, Carla F, Vitorino M, Panzarella A, Porcar L, Boilot M J Synchrotron Radiat. 2015; 22(6):1364-71.

PMID: 26524300 PMC: 4787838. DOI: 10.1107/S1600577515016318.


Qualitative and Quantitative Analysis of ROS-Mediated Oridonin-Induced Oesophageal Cancer KYSE-150 Cell Apoptosis by Atomic Force Microscopy.

Pi J, Cai H, Jin H, Yang F, Jiang J, Wu A PLoS One. 2015; 10(10):e0140935.

PMID: 26496199 PMC: 4619704. DOI: 10.1371/journal.pone.0140935.

References
1.
Cartagena A, Raman A . Local viscoelastic properties of live cells investigated using dynamic and quasi-static atomic force microscopy methods. Biophys J. 2014; 106(5):1033-43. PMC: 4026794. DOI: 10.1016/j.bpj.2013.12.037. View

2.
Li J, Shariff A, Wiking M, Lundberg E, Rohde G, Murphy R . Estimating microtubule distributions from 2D immunofluorescence microscopy images reveals differences among human cultured cell lines. PLoS One. 2012; 7(11):e50292. PMC: 3508979. DOI: 10.1371/journal.pone.0050292. View

3.
Engler A, Sen S, Sweeney H, Discher D . Matrix elasticity directs stem cell lineage specification. Cell. 2006; 126(4):677-89. DOI: 10.1016/j.cell.2006.06.044. View

4.
Rotsch C, Radmacher M . Drug-induced changes of cytoskeletal structure and mechanics in fibroblasts: an atomic force microscopy study. Biophys J. 2000; 78(1):520-35. PMC: 1300659. DOI: 10.1016/S0006-3495(00)76614-8. View

5.
Martinez-Martin D, Herruzo E, Dietz C, Gomez-Herrero J, Garcia R . Noninvasive protein structural flexibility mapping by bimodal dynamic force microscopy. Phys Rev Lett. 2011; 106(19):198101. DOI: 10.1103/PhysRevLett.106.198101. View