» Articles » PMID: 24999436

: a Model Oomycete Plant Pathogen

Overview
Journal Mycology
Date 2014 Jul 8
PMID 24999436
Citations 30
Authors
Affiliations
Soon will be listed here.
Abstract

Oomycetes are eukaryotic microorganisms morphologically similar to but phylogenetically distant from true fungi. Most species in the genus of oomycetes are devastating plant pathogens, causing damages to both agricultural production and natural ecosystems. Tremendous progress has been achieved in recent years in diversity, evolution and lifestyles of oomycete plant pathogens, as well as on the understanding of genetic and molecular basis of oomycete-plant interactions. is a soilborne pathogen with a wide range of host plants and represents most species in the genus . In this review, we present some recent progress of research by highlighting important features that make it emerge as a model species of oomycete pathogens. The emerged model pathogen will facilitate improved understanding of oomycete biology and pathology that are crucial to the development of novel disease-control strategies and improved disease-control measures.

Citing Articles

Molecular basis for the reversible ADP-ribosylation of guanosine bases.

Schuller M, Raggiaschi R, Mikolcevic P, Rack J, Ariza A, Zhang Y Mol Cell. 2023; 83(13):2303-2315.e6.

PMID: 37390817 PMC: 11543638. DOI: 10.1016/j.molcel.2023.06.013.


The devastating oomycete phytopathogen Phytophthora cactorum: Insights into its biology and molecular features.

Chen X, Wen K, Zhou X, Zhu M, Liu Y, Jin J Mol Plant Pathol. 2023; 24(9):1017-1032.

PMID: 37144631 PMC: 10423333. DOI: 10.1111/mpp.13345.


Population Genetic Analysis of from Taro in Japan Using SSR Markers.

Zhang J, Hieno A, Otsubo K, Feng W, Kageyama K J Fungi (Basel). 2023; 9(4).

PMID: 37108846 PMC: 10145753. DOI: 10.3390/jof9040391.


NtbHLH49, a jasmonate-regulated transcription factor, negatively regulates tobacco responses to .

Wang W, Zhang J, Cao Y, Yang X, Wang F, Yang J Front Plant Sci. 2022; 13:1073856.

PMID: 36561439 PMC: 9764443. DOI: 10.3389/fpls.2022.1073856.


Transcriptomics and iTRAQ-proteomics analyses provide novel insights into the defense mechanism of black shank disease in tobacco.

Bai G, Fang D, Yang D, Tong Z, Chen X, Fei M Front Plant Sci. 2022; 13:991074.

PMID: 36340390 PMC: 9634741. DOI: 10.3389/fpls.2022.991074.


References
1.
Berre J, Engler G, Panabieres F . Exploration of the late stages of the tomato-Phytophthora parasitica interactions through histological analysis and generation of expressed sequence tags. New Phytol. 2007; 177(2):480-492. DOI: 10.1111/j.1469-8137.2007.02269.x. View

2.
Levesque C, Brouwer H, Cano L, Hamilton J, Holt C, Huitema E . Genome sequence of the necrotrophic plant pathogen Pythium ultimum reveals original pathogenicity mechanisms and effector repertoire. Genome Biol. 2010; 11(7):R73. PMC: 2926784. DOI: 10.1186/gb-2010-11-7-r73. View

3.
Blair J, Coffey M, Park S, Geiser D, Kang S . A multi-locus phylogeny for Phytophthora utilizing markers derived from complete genome sequences. Fungal Genet Biol. 2007; 45(3):266-77. DOI: 10.1016/j.fgb.2007.10.010. View

4.
Fevre M . Transformation of the oomycete Saprolegnia monoïca to hygromycin-B resistance. Curr Genet. 1997; 31(3):272-5. DOI: 10.1007/s002940050205. View

5.
Mateos F, Rickauer M, Esquerre-Tugaye M . Cloning and characterization of a cDNA encoding an elicitor of Phytophthora parasitica var. nicotianae that shows cellulose-binding and lectin-like activities. Mol Plant Microbe Interact. 1997; 10(9):1045-53. DOI: 10.1094/MPMI.1997.10.9.1045. View