» Articles » PMID: 24960050

Orange Fluorescent Proteins: Structural Studies of LSSmOrange, PSmOrange and PSmOrange2

Overview
Journal PLoS One
Date 2014 Jun 25
PMID 24960050
Citations 8
Authors
Affiliations
Soon will be listed here.
Abstract

A structural analysis of the recently developed orange fluorescent proteins with novel phenotypes, LSSmOrange (λex/λem at 437/572 nm), PSmOrange (λex/λem at 548/565 nm and for photoconverted form at 636/662 nm) and PSmOrange2 (λex/λem at 546/561 nm and for photoconverted form at 619/651 nm), is presented. The obtained crystallographic structures provide an understanding of how the ensemble of a few key mutations enabled special properties of the orange FPs. While only a single Ile161Asp mutation, enabling excited state proton transfer, is critical for LSSmOrange, other substitutions provide refinement of its special properties and an exceptional 120 nm large Stokes shift. Similarly, a single Gln64Leu mutation was sufficient to cause structural changes resulting in photoswitchability of PSmOrange, and only one additional substitution (Phe65Ile), yielding PSmOrange2, was enough to greatly decrease the energy of photoconversion and increase its efficiency of photoswitching. Fluorescence of photoconverted PSmOrange and PSmOrange2 demonstrated an unexpected bathochromic shift relative to the fluorescence of classic red FPs, such as DsRed, eqFP578 and zFP574. The structural changes associated with this fluorescence shift are of considerable value for the design of advanced far-red FPs. For this reason the chromophore transformations accompanying photoconversion of the orange FPs are discussed.

Citing Articles

Excited State Vibrational Dynamics Reveals a Photocycle That Enhances the Photostability of the TagRFP-T Fluorescent Protein.

Yabushita A, Cheng C, Ko Y, Kobayashi T, Iwakura I, Jimenez R J Phys Chem B. 2024; 128(5):1188-1193.

PMID: 38282329 PMC: 10860143. DOI: 10.1021/acs.jpcb.3c07212.


A Monochromatically Excitable Green-Red Dual-Fluorophore Fusion Incorporating a New Large Stokes Shift Fluorescent Protein.

Ejike J, Sadoine M, Shen Y, Ishikawa Y, Sunal E, Hansch S Biochemistry. 2023; 63(1):171-180.

PMID: 38113455 PMC: 10765376. DOI: 10.1021/acs.biochem.3c00451.


Labeling and Tracking of Individual Human Mesenchymal Stromal Cells Using Photoconvertible Fluorescent Microcapsules.

Sindeeva O, Demina P, Kozyreva Z, Muslimov A, Gusliakova O, Laushkina V Int J Mol Sci. 2023; 24(17).

PMID: 37686471 PMC: 10488098. DOI: 10.3390/ijms241713665.


Mito-SinCe Approach to Analyze Mitochondrial Structure-Function Relationship in Single Cells.

Spurlock B, Mitra K Methods Mol Biol. 2021; 2275:415-432.

PMID: 34118054 DOI: 10.1007/978-1-0716-1262-0_27.


A General Mechanism of Green-to-Red Photoconversions of GFP.

Gorbachev D, Petrusevich E, Kabylda A, Maksimov E, Lukyanov K, Bogdanov A Front Mol Biosci. 2020; 7:176.

PMID: 32850965 PMC: 7405548. DOI: 10.3389/fmolb.2020.00176.


References
1.
Davis I, Murray L, Richardson J, Richardson D . MOLPROBITY: structure validation and all-atom contact analysis for nucleic acids and their complexes. Nucleic Acids Res. 2004; 32(Web Server issue):W615-9. PMC: 441536. DOI: 10.1093/nar/gkh398. View

2.
Murshudov G, Skubak P, Lebedev A, Pannu N, Steiner R, Nicholls R . REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr D Biol Crystallogr. 2011; 67(Pt 4):355-67. PMC: 3069751. DOI: 10.1107/S0907444911001314. View

3.
Murshudov G, Vagin A, Dodson E . Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr. 1997; 53(Pt 3):240-55. DOI: 10.1107/S0907444996012255. View

4.
Otwinowski Z, Minor W . Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 1997; 276:307-26. DOI: 10.1016/S0076-6879(97)76066-X. View

5.
Chudakov D, Lukyanov S, Lukyanov K . Tracking intracellular protein movements using photoswitchable fluorescent proteins PS-CFP2 and Dendra2. Nat Protoc. 2007; 2(8):2024-32. DOI: 10.1038/nprot.2007.291. View