Modeling-error Robustness of a Viral-load Preconditioning Strategy for HIV Treatment Switching
Overview
Affiliations
In previous work, we have developed optimal-control based approaches that seek to minimize the risk of subsequent virological failure by "pre-conditioning" the viral load during therapy switches. In this paper, we use Monte-Carlo methods to evaluate the sensitivity of an open-loop implementation of these approaches to modeling errors. To account for hidden parameter dependencies, we use parameter distributions obtained from the convergence of Bayesian parameter estimation techniques applied to sets of clinical data obtained during serial therapy interruptions as the distribution from which the Monte-Carlo method samples.
Approximate-model closed-loop minimal sampling method for HIV viral-load minima detection.
Zurakowski R, Churgin M, Perez C, Rodriguez M Proc Am Control Conf. 2012; :5418-5419.
PMID: 23001383 PMC: 3445656. DOI: 10.1109/acc.2011.5991281.
Robust closed-loop minimal sampling method for HIV therapy switching strategies.
Cardozo E, Zurakowski R IEEE Trans Biomed Eng. 2012; 59(8):2227-34.
PMID: 22652153 PMC: 3467342. DOI: 10.1109/TBME.2012.2201479.
Optimal antiviral switching to minimize resistance risk in HIV therapy.
Luo R, Piovoso M, Martinez-Picado J, Zurakowski R PLoS One. 2011; 6(11):e27047.
PMID: 22073250 PMC: 3207836. DOI: 10.1371/journal.pone.0027047.
Nonlinear observer output-feedback MPC treatment scheduling for HIV.
Zurakowski R Biomed Eng Online. 2011; 10:40.
PMID: 21619634 PMC: 3127993. DOI: 10.1186/1475-925X-10-40.
Controlling the Evolution of Resistance.
Luo R, Cannon L, Hernandez J, Piovoso M, Zurakowski R J Process Control. 2011; 21(3):367-378.
PMID: 21516198 PMC: 3079266. DOI: 10.1016/j.jprocont.2010.11.010.