» Articles » PMID: 24949446

Circadian Modulation of the Cl(-) Equilibrium Potential in the Rat Suprachiasmatic Nuclei

Overview
Journal Biomed Res Int
Publisher Wiley
Date 2014 Jun 21
PMID 24949446
Citations 21
Authors
Affiliations
Soon will be listed here.
Abstract

The suprachiasmatic nuclei (SCN) constitute a circadian clock in mammals, where γ-amino-butyric acid (GABA) neurotransmission prevails and participates in different aspects of circadian regulation. Evidence suggests that GABA has an excitatory function in the SCN in addition to its typical inhibitory role. To examine this possibility further, we determined the equilibrium potential of GABAergic postsynaptic currents (E(GABA)) at different times of the day and in different regions of the SCN, using either perforated or whole cell patch clamp. Our results indicate that during the day most neurons in the dorsal SCN have an E(GABA) close to -30 mV while in the ventral SCN they have an E(GABA) close to -60 mV; this difference reverses during the night, in the dorsal SCN neurons have an E(GABA) of -60 mV and in the ventral SCN they have an E(GABA) of -30 mV. The depolarized equilibrium potential can be attributed to the activity of the Na(+)-K(+)-2Cl(-) (NKCC) cotransporter since the equilibrium potential becomes more negative following addition of the NKCC blocker bumetanide. Our results suggest an excitatory role for GABA in the SCN and further indicate both time (day versus night) and regional (dorsal versus ventral) modulation of E(GABA) in the SCN.

Citing Articles

GABA receptor subunit composition regulates circadian rhythms in rest-wake and synchrony among cells in the suprachiasmatic nucleus.

Granados-Fuentes D, Lambert P, Simon T, Mennerick S, Herzog E Proc Natl Acad Sci U S A. 2024; 121(31):e2400339121.

PMID: 39047036 PMC: 11295074. DOI: 10.1073/pnas.2400339121.


Circadian Rhythm Regulation by Pacemaker Neuron Chloride Oscillation in Flies.

Rodan A Physiology (Bethesda). 2024; 39(3).

PMID: 38411570 PMC: 11368518. DOI: 10.1152/physiol.00006.2024.


Chloride oscillation in pacemaker neurons regulates circadian rhythms through a chloride-sensing WNK kinase signaling cascade.

Schellinger J, Sun Q, Pleinis J, An S, Hu J, Mercenne G Curr Biol. 2022; 32(6):1429-1438.e6.

PMID: 35303418 PMC: 8972083. DOI: 10.1016/j.cub.2022.03.017.


Long-Term Imaging Reveals a Circadian Rhythm of Intracellular Chloride in Neurons of the Suprachiasmatic Nucleus.

Klett N, Cravetchi O, Allen C J Biol Rhythms. 2022; 37(1):110-123.

PMID: 34994231 PMC: 9203244. DOI: 10.1177/07487304211059770.


Systematic review of drugs that modify the circadian system's phase-shifting responses to light exposure.

Lee R, McGee A, Fernandez F Neuropsychopharmacology. 2021; 47(4):866-879.

PMID: 34961774 PMC: 8882192. DOI: 10.1038/s41386-021-01251-8.


References
1.
Wagner S, Sagiv N, Yarom Y . GABA-induced current and circadian regulation of chloride in neurones of the rat suprachiasmatic nucleus. J Physiol. 2001; 537(Pt 3):853-69. PMC: 2279012. DOI: 10.1111/j.1469-7793.2001.00853.x. View

2.
Irwin R, Allen C . GABAergic signaling induces divergent neuronal Ca2+ responses in the suprachiasmatic nucleus network. Eur J Neurosci. 2009; 30(8):1462-75. PMC: 3700401. DOI: 10.1111/j.1460-9568.2009.06944.x. View

3.
LeSauter J, Kriegsfeld L, Hon J, Silver R . Calbindin-D(28K) cells selectively contact intra-SCN neurons. Neuroscience. 2002; 111(3):575-85. PMC: 3296561. DOI: 10.1016/s0306-4522(01)00604-2. View

4.
Abrahamson E, Moore R . Suprachiasmatic nucleus in the mouse: retinal innervation, intrinsic organization and efferent projections. Brain Res. 2001; 916(1-2):172-91. DOI: 10.1016/s0006-8993(01)02890-6. View

5.
Castel M, Morris J . Morphological heterogeneity of the GABAergic network in the suprachiasmatic nucleus, the brain's circadian pacemaker. J Anat. 2000; 196 ( Pt 1):1-13. PMC: 1468035. DOI: 10.1046/j.1469-7580.2000.19610001.x. View