» Articles » PMID: 24918865

Ultrafast and Wide Range Analysis of DNA Molecules Using Rigid Network Structure of Solid Nanowires

Overview
Journal Sci Rep
Specialty Science
Date 2014 Jun 12
PMID 24918865
Citations 10
Authors
Affiliations
Soon will be listed here.
Abstract

Analyzing sizes of DNA via electrophoresis using a gel has played an important role in the recent, rapid progress of biology and biotechnology. Although analyzing DNA over a wide range of sizes in a short time is desired, no existing electrophoresis methods have been able to fully satisfy these two requirements. Here we propose a novel method using a rigid 3D network structure composed of solid nanowires within a microchannel. This rigid network structure enables analysis of DNA under applied DC electric fields for a large DNA size range (100 bp-166 kbp) within 13 s, which are much wider and faster conditions than those of any existing methods. The network density is readily varied for the targeted DNA size range by tailoring the number of cycles of the nanowire growth only at the desired spatial position within the microchannel. The rigid dense 3D network structure with spatial density control plays an important role in determining the capability for analyzing DNA. Since the present method allows the spatial location and density of the nanostructure within the microchannels to be defined, this unique controllability offers a new strategy to develop an analytical method not only for DNA but also for other biological molecules.

Citing Articles

Giant Magnetoresistance and Magneto-Thermopower in 3D Interconnected NiFe/Cu Multilayered Nanowire Networks.

Marchal N, da Camara Santa Clara Gomes T, Araujo F, Piraux L Nanomaterials (Basel). 2021; 11(5).

PMID: 33925733 PMC: 8146549. DOI: 10.3390/nano11051133.


Oxide Nanowire Microfluidic Devices for Capturing Single-stranded DNAs.

Musa M, Yasui T, Zhu Z, Nagashima K, Ono M, Liu Q Anal Sci. 2021; 37(8):1139-1145.

PMID: 33487595 DOI: 10.2116/analsci.20P421.


Magneto-Transport in Flexible 3D Networks Made of Interconnected Magnetic Nanowires and Nanotubes.

da Camara Santa Clara Gomes T, Marchal N, Araujo F, Velazquez Galvan Y, de la Torre Medina J, Piraux L Nanomaterials (Basel). 2021; 11(1).

PMID: 33467036 PMC: 7830720. DOI: 10.3390/nano11010221.


Ring Polymers: Threadings, Knot Electrophoresis and Topological Glasses.

Michieletto D, Marenduzzo D, Orlandini E, Turner M Polymers (Basel). 2019; 9(8).

PMID: 30971026 PMC: 6418951. DOI: 10.3390/polym9080349.


Entropic trap purification of long DNA.

Agrawal P, Bognar Z, Dorfman K Lab Chip. 2018; 18(6):955-964.

PMID: 29469139 PMC: 5849573. DOI: 10.1039/c7lc01355h.


References
1.
Ou J, Cho J, Olson D, Dorfman K . DNA electrophoresis in a sparse ordered post array. Phys Rev E Stat Nonlin Soft Matter Phys. 2009; 79(6 Pt 1):061904. DOI: 10.1103/PhysRevE.79.061904. View

2.
Zeng Y, Harrison D . Self-assembled colloidal arrays as three-dimensional nanofluidic sieves for separation of biomolecules on microchips. Anal Chem. 2007; 79(6):2289-95. DOI: 10.1021/ac061931h. View

3.
Duke , Semenov , Viovy . Mobility of a reptating polymer. Phys Rev Lett. 1992; 69(22):3260-3263. DOI: 10.1103/PhysRevLett.69.3260. View

4.
Pernodet N, Maaloum M, Tinland B . Pore size of agarose gels by atomic force microscopy. Electrophoresis. 1997; 18(1):55-8. DOI: 10.1002/elps.1150180111. View

5.
Doyle P, Bibette J, Bancaud A, Viovy J . Self-assembled magnetic matrices for DNA separation chips. Science. 2002; 295(5563):2237. DOI: 10.1126/science.1068420. View