» Articles » PMID: 24916924

A Biocompatible Alkene Hydrogenation Merges Organic Synthesis with Microbial Metabolism

Overview
Specialty Chemistry
Date 2014 Jun 12
PMID 24916924
Citations 18
Authors
Affiliations
Soon will be listed here.
Abstract

Organic chemists and metabolic engineers use orthogonal technologies to construct essential small molecules such as pharmaceuticals and commodity chemicals. While chemists have leveraged the unique capabilities of biological catalysts for small-molecule production, metabolic engineers have not likewise integrated reactions from organic synthesis with the metabolism of living organisms. Reported herein is a method for alkene hydrogenation which utilizes a palladium catalyst and hydrogen gas generated directly by a living microorganism. This biocompatible transformation, which requires both catalyst and microbe, and can be used on a preparative scale, represents a new strategy for chemical synthesis that combines organic chemistry and metabolic engineering.

Citing Articles

Concatenating Microbial, Enzymatic, and Organometallic Catalysis for Integrated Conversion of Renewable Carbon Sources.

Klos N, Osterthun O, Mengers H, Lanzerath P, Graf von Westarp W, Lim G JACS Au. 2024; 4(12):4546-4570.

PMID: 39735920 PMC: 11672146. DOI: 10.1021/jacsau.4c00511.


Microbial Upcycling of Waste PET to Adipic Acid.

Valenzuela-Ortega M, Suitor J, White M, Hinchcliffe T, Wallace S ACS Cent Sci. 2023; 9(11):2057-2063.

PMID: 38033806 PMC: 10683474. DOI: 10.1021/acscentsci.3c00414.


Palladium Nanoparticles from G20 Catalyze Biocompatible Sonogashira and Biohydrogenation Cascades.

Era Y, Dennis J, Horsfall L, Wallace S JACS Au. 2022; 2(11):2446-2452.

PMID: 36465541 PMC: 9709939. DOI: 10.1021/jacsau.2c00366.


In Vivo Biocatalytic Cascades Featuring an Artificial-Enzyme-Catalysed New-to-Nature Reaction.

Ofori Atta L, Zhou Z, Roelfes G Angew Chem Int Ed Engl. 2022; 62(1):e202214191.

PMID: 36342952 PMC: 10100225. DOI: 10.1002/anie.202214191.


Hydrodechlorination of Aryl Chlorides Under Biocompatible Conditions.

Gomez K, Clay-Barbour E, Schiet G, Stubbs S, AbuBakar M, Shanker R ACS Omega. 2022; 7(18):16028-16034.

PMID: 35571846 PMC: 9097202. DOI: 10.1021/acsomega.2c01204.


References
1.
Kim J, Jo B, Cha H . Production of biohydrogen by recombinant expression of [NiFe]-hydrogenase 1 in Escherichia coli. Microb Cell Fact. 2010; 9:54. PMC: 2908566. DOI: 10.1186/1475-2859-9-54. View

2.
McIntosh J, Coelho P, Farwell C, Jane Wang Z, Lewis J, Brown T . Enantioselective intramolecular C-H amination catalyzed by engineered cytochrome P450 enzymes in vitro and in vivo. Angew Chem Int Ed Engl. 2013; 52(35):9309-12. PMC: 3988694. DOI: 10.1002/anie.201304401. View

3.
Hansen K, Hsiao Y, Xu F, Rivera N, Clausen A, Kubryk M . Highly efficient asymmetric synthesis of sitagliptin. J Am Chem Soc. 2009; 131(25):8798-804. DOI: 10.1021/ja902462q. View

4.
Friedfeld M, Shevlin M, Hoyt J, Krska S, Tudge M, Chirik P . Cobalt precursors for high-throughput discovery of base metal asymmetric alkene hydrogenation catalysts. Science. 2013; 342(6162):1076-80. DOI: 10.1126/science.1243550. View

5.
Streu C, Meggers E . Ruthenium-induced allylcarbamate cleavage in living cells. Angew Chem Int Ed Engl. 2006; 45(34):5645-8. DOI: 10.1002/anie.200601752. View