» Articles » PMID: 24903560

Dual Catalysis. Single-electron Transmetalation in Organoboron Cross-coupling by Photoredox/nickel Dual Catalysis

Overview
Journal Science
Specialty Science
Date 2014 Jun 7
PMID 24903560
Citations 274
Authors
Affiliations
Soon will be listed here.
Abstract

The routine application of C(sp3)-hybridized nucleophiles in cross-coupling reactions remains an unsolved challenge in organic chemistry. The sluggish transmetalation rates observed for the preferred organoboron reagents in such transformations are a consequence of the two-electron mechanism underlying the standard catalytic approach. We describe a mechanistically distinct single-electron transfer-based strategy for the activation of organoboron reagents toward transmetalation that exhibits complementary reactivity patterns. Application of an iridium photoredox catalyst in tandem with a nickel catalyst effects the cross-coupling of potassium alkoxyalkyl- and benzyltrifluoroborates with an array of aryl bromides under exceptionally mild conditions (visible light, ambient temperature, no strong base). The transformation has been extended to the asymmetric and stereoconvergent cross-coupling of a secondary benzyltrifluoroborate.

Citing Articles

Unlocking the reactivity of the C-In bond: alkyl indium reagents as a source of radicals under photocatalytic conditions.

Gladkov A, Levin V, Cheboksarov D, Dilman A Chem Sci. 2025; .

PMID: 40041808 PMC: 11873600. DOI: 10.1039/d4sc08521c.


A modular approach to catalytic stereoselective synthesis of chiral 1,2-diols and 1,3-diols.

Xu S, Ping Y, Su Y, Guo H, Luo A, Kong W Nat Commun. 2025; 16(1):364.

PMID: 39754022 PMC: 11699147. DOI: 10.1038/s41467-024-55744-3.


Multiconfigurational Electronic Structure of Nickel Cross-Coupling Catalysts Revealed by X-ray Absorption Spectroscopy.

Nelson K, Kazmierczak N, Cagan D, Follmer A, Scott T, Raj S J Phys Chem Lett. 2024; 16(1):87-94.

PMID: 39700059 PMC: 11726796. DOI: 10.1021/acs.jpclett.4c02917.


Photochemical 1,3-boronate rearrangement enables three-component N-alkylation for α-tertiary hydroxybenzylamine synthesis.

Zou P, Fu D, Wang H, Sun R, Lan Y, Chen Y Nat Commun. 2024; 15(1):10234.

PMID: 39592574 PMC: 11599903. DOI: 10.1038/s41467-024-54165-6.


Decarboxylative Cross-Coupling Enabled by Fe and Ni Metallaphotoredox Catalysis.

Nsouli R, Nayak S, Balakrishnan V, Lin J, Chi B, Ford H J Am Chem Soc. 2024; 146(43):29551-29559.

PMID: 39422549 PMC: 11528444. DOI: 10.1021/jacs.4c09621.


References
1.
Li L, Wang C, Huang R, Biscoe M . Stereoretentive Pd-catalysed Stille cross-coupling reactions of secondary alkyl azastannatranes and aryl halides. Nat Chem. 2013; 5(7):607-12. PMC: 8048766. DOI: 10.1038/nchem.1652. View

2.
Lockner J, Dixon D, Risgaard R, Baran P . Practical radical cyclizations with arylboronic acids and trifluoroborates. Org Lett. 2011; 13(20):5628-31. PMC: 3193542. DOI: 10.1021/ol2023505. View

3.
Schultz D, Yoon T . Solar synthesis: prospects in visible light photocatalysis. Science. 2014; 343(6174):1239176. PMC: 4547527. DOI: 10.1126/science.1239176. View

4.
Imao D, Glasspoole B, Laberge V, Crudden C . Cross coupling reactions of chiral secondary organoboronic esters with retention of configuration. J Am Chem Soc. 2009; 131(14):5024-5. DOI: 10.1021/ja8094075. View

5.
Rudolph A, Lautens M . Secondary alkyl halides in transition-metal-catalyzed cross-coupling reactions. Angew Chem Int Ed Engl. 2009; 48(15):2656-70. DOI: 10.1002/anie.200803611. View