» Articles » PMID: 24898935

Quantitative Scoring of Differential Drug Sensitivity for Individually Optimized Anticancer Therapies

Abstract

We developed a systematic algorithmic solution for quantitative drug sensitivity scoring (DSS), based on continuous modeling and integration of multiple dose-response relationships in high-throughput compound testing studies. Mathematical model estimation and continuous interpolation makes the scoring approach robust against sources of technical variability and widely applicable to various experimental settings, both in cancer cell line models and primary patient-derived cells. Here, we demonstrate its improved performance over other response parameters especially in a leukemia patient case study, where differential DSS between patient and control cells enabled identification of both cancer-selective drugs and drug-sensitive patient sub-groups, as well as dynamic monitoring of the response patterns and oncogenic driver signals during cancer progression and relapse in individual patient cells ex vivo. An open-source and easily extendable implementation of the DSS calculation is made freely available to support its tailored application to translating drug sensitivity testing results into clinically actionable treatment options.

Citing Articles

Evaluating feature extraction in ovarian cancer cell line co-cultures using deep neural networks.

Sharma O, Gudoityte G, Minozada R, Kallioniemi O, Turkki R, Paavolainen L Commun Biol. 2025; 8(1):303.

PMID: 40000764 PMC: 11862010. DOI: 10.1038/s42003-025-07766-w.


Exploring high-throughput drug sensitivity testing in neuroblastoma cell lines and patient-derived tumor organoids in the era of precision medicine.

Langenberg K, van Hooff S, Koopmans B, Strijker J, Kholosy W, Ober K Eur J Cancer. 2025; 218:115275.

PMID: 39954414 PMC: 11884408. DOI: 10.1016/j.ejca.2025.115275.


Synergistic combination of orally available safe-in-man pleconaril, AG7404, and mindeudesivir inhibits enterovirus infections in human cell and organoid cultures.

Ravlo E, Ianevski A, Schjolberg J, Solvang V, Dumaru R, Lysvand H Cell Mol Life Sci. 2025; 82(1):57.

PMID: 39843710 PMC: 11754576. DOI: 10.1007/s00018-025-05581-4.


Exploiting NRF2-ARE pathway activation in papillary renal cell carcinoma.

Angori S, Lakshminarayanan H, Banaei-Esfahani A, Muhlbauer K, Bolck H, Kallioniemi O Int J Cancer. 2024; 156(7):1457-1469.

PMID: 39707614 PMC: 11789458. DOI: 10.1002/ijc.35311.


Molecular and functional profiling of primary normal ovarian cells defines insights into cancer development and drug responses.

Piki E, Dini A, Rantanen F, Bentz F, Paavolainen L, Barker H Mol Ther Oncol. 2024; 32(4):200903.

PMID: 39634630 PMC: 11616607. DOI: 10.1016/j.omton.2024.200903.


References
1.
Haibe-Kains B, El-Hachem N, Birkbak N, Jin A, Beck A, Aerts H . Inconsistency in large pharmacogenomic studies. Nature. 2013; 504(7480):389-93. PMC: 4237165. DOI: 10.1038/nature12831. View

2.
Pemovska T, Kontro M, Yadav B, Edgren H, Eldfors S, Szwajda A . Individualized systems medicine strategy to tailor treatments for patients with chemorefractory acute myeloid leukemia. Cancer Discov. 2013; 3(12):1416-29. DOI: 10.1158/2159-8290.CD-13-0350. View

3.
Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin A, Kim S . The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature. 2012; 483(7391):603-7. PMC: 3320027. DOI: 10.1038/nature11003. View

4.
Eghtedar A, Verstovsek S, Estrov Z, Burger J, Cortes J, Bivins C . Phase 2 study of the JAK kinase inhibitor ruxolitinib in patients with refractory leukemias, including postmyeloproliferative neoplasm acute myeloid leukemia. Blood. 2012; 119(20):4614-8. PMC: 4081383. DOI: 10.1182/blood-2011-12-400051. View

5.
Welch J, Ley T, Link D, Miller C, Larson D, Koboldt D . The origin and evolution of mutations in acute myeloid leukemia. Cell. 2012; 150(2):264-78. PMC: 3407563. DOI: 10.1016/j.cell.2012.06.023. View