» Articles » PMID: 24896567

Highly Energized Inhibitory Interneurons Are a Central Element for Information Processing in Cortical Networks

Overview
Authors
Affiliations
Soon will be listed here.
Abstract

Gamma oscillations (∼30 to 100 Hz) provide a fundamental mechanism of information processing during sensory perception, motor behavior, and memory formation by coordination of neuronal activity in networks of the hippocampus and neocortex. We review the cellular mechanisms of gamma oscillations about the underlying neuroenergetics, i.e., high oxygen consumption rate and exquisite sensitivity to metabolic stress during hypoxia or poisoning of mitochondrial oxidative phosphorylation. Gamma oscillations emerge from the precise synaptic interactions of excitatory pyramidal cells and inhibitory GABAergic interneurons. In particular, specialized interneurons such as parvalbumin-positive basket cells generate action potentials at high frequency ('fast-spiking') and synchronize the activity of numerous pyramidal cells by rhythmic inhibition ('clockwork'). As prerequisites, fast-spiking interneurons have unique electrophysiological properties and particularly high energy utilization, which is reflected in the ultrastructure by enrichment with mitochondria and cytochrome c oxidase, most likely needed for extensive membrane ion transport and γ-aminobutyric acid metabolism. This supports the hypothesis that highly energized fast-spiking interneurons are a central element for cortical information processing and may be critical for cognitive decline when energy supply becomes limited ('interneuron energy hypothesis'). As a clinical perspective, we discuss the functional consequences of metabolic and oxidative stress in fast-spiking interneurons in aging, ischemia, Alzheimer's disease, and schizophrenia.

Citing Articles

Selenium deficiency impedes maturation of parvalbumin interneurons, perineuronal nets, and neural network activity.

Sasuclark A, Watanabe M, Roshto K, Kilonzo V, Zhang Y, Pitts M Redox Biol. 2025; 81:103548.

PMID: 39983343 PMC: 11893315. DOI: 10.1016/j.redox.2025.103548.


Synaptic Vesicle Glycoprotein 2A Knockout in Parvalbumin and Somatostatin Interneurons Drives Seizures in the Postnatal Mouse Brain.

Bartholome O, Neirinckx V, De La Brassinne O, Desloovere J, Van Den Ackerveken P, Raedt R J Neurosci. 2025; 45(8).

PMID: 39753304 PMC: 11841765. DOI: 10.1523/JNEUROSCI.1169-24.2024.


Daily rhythms drive dynamism in sleep, oscillations and interneuron firing, while excitatory firing remains stable across 24 h.

Ognjanovski N, Kim D, Charlett-Green E, Goldiez E, van Koppen S, Aton S Eur J Neurosci. 2024; 61(1):e16619.

PMID: 39663213 PMC: 11664907. DOI: 10.1111/ejn.16619.


Low-frequency repetitive transcranial magnetic stimulation for the treatment of post-traumatic stress disorder and its comparison with high-frequency stimulation: a systematic review and meta-analysis.

Jiang C, Yang Y, Wu L, Liu W, Zhao G Ther Adv Psychopharmacol. 2024; 14:20451253241271870.

PMID: 39411406 PMC: 11475085. DOI: 10.1177/20451253241271870.


Reciprocal regulation of oxidative stress and mitochondrial fission augments parvalbumin downregulation through CDK5-DRP1- and GPx1-NF-κB signaling pathways.

Wang S, Lee D, Kim T, Kim J, Kang T Cell Death Dis. 2024; 15(9):707.

PMID: 39349423 PMC: 11443148. DOI: 10.1038/s41419-024-07050-5.


References
1.
Vafaee M, Gjedde A . Spatially dissociated flow-metabolism coupling in brain activation. Neuroimage. 2004; 21(2):507-15. DOI: 10.1016/j.neuroimage.2003.10.003. View

2.
Moran M, Moreno-Lastres D, Marin-Buera L, Arenas J, Martin M, Ugalde C . Mitochondrial respiratory chain dysfunction: implications in neurodegeneration. Free Radic Biol Med. 2012; 53(3):595-609. DOI: 10.1016/j.freeradbiomed.2012.05.009. View

3.
Roubertoux P, Sluyter F, Carlier M, Marcet B, Maarouf-Veray F, Cherif C . Mitochondrial DNA modifies cognition in interaction with the nuclear genome and age in mice. Nat Genet. 2003; 35(1):65-9. DOI: 10.1038/ng1230. View

4.
Kittelberger K, Hur E, Sazegar S, Keshavan V, Kocsis B . Comparison of the effects of acute and chronic administration of ketamine on hippocampal oscillations: relevance for the NMDA receptor hypofunction model of schizophrenia. Brain Struct Funct. 2011; 217(2):395-409. PMC: 3288729. DOI: 10.1007/s00429-011-0351-8. View

5.
Martina M, Royer S, Pare D . Cell-type-specific GABA responses and chloride homeostasis in the cortex and amygdala. J Neurophysiol. 2001; 86(6):2887-95. DOI: 10.1152/jn.2001.86.6.2887. View