» Articles » PMID: 24853940

Cell Types, Network Homeostasis, and Pathological Compensation from a Biologically Plausible Ion Channel Expression Model

Overview
Journal Neuron
Publisher Cell Press
Specialty Neurology
Date 2014 May 24
PMID 24853940
Citations 149
Authors
Affiliations
Soon will be listed here.
Abstract

How do neurons develop, control, and maintain their electrical signaling properties in spite of ongoing protein turnover and perturbations to activity? From generic assumptions about the molecular biology underlying channel expression, we derive a simple model and show how it encodes an "activity set point" in single neurons. The model generates diverse self-regulating cell types and relates correlations in conductance expression observed in vivo to underlying channel expression rates. Synaptic as well as intrinsic conductances can be regulated to make a self-assembling central pattern generator network; thus, network-level homeostasis can emerge from cell-autonomous regulation rules. Finally, we demonstrate that the outcome of homeostatic regulation depends on the complement of ion channels expressed in cells: in some cases, loss of specific ion channels can be compensated; in others, the homeostatic mechanism itself causes pathological loss of function.

Citing Articles

Homeostatic regulation of a motor circuit through temperature sensing rather than activity sensing.

Cannon D, Santin J bioRxiv. 2025; .

PMID: 39829762 PMC: 11741314. DOI: 10.1101/2025.01.10.632419.


Multicellular adaptation to electrophysiological perturbations analyzed by deterministic and stochastic bioelectrical models.

Cervera J, Levin M, Mafe S Sci Rep. 2024; 14(1):27608.

PMID: 39528615 PMC: 11554804. DOI: 10.1038/s41598-024-79087-7.


Dimensionality reduction of neuronal degeneracy reveals two interfering physiological mechanisms.

Fyon A, Franci A, Sacre P, Drion G PNAS Nexus. 2024; 3(10):pgae415.

PMID: 39359396 PMC: 11443964. DOI: 10.1093/pnasnexus/pgae415.


The Brain's Best Kept Secret Is Its Degenerate Structure.

Albantakis L, Bernard C, Brenner N, Marder E, Narayanan R J Neurosci. 2024; 44(40).

PMID: 39358027 PMC: 11450540. DOI: 10.1523/JNEUROSCI.1339-24.2024.


A possible path to persistent re-entry waves at the outlet of the left pulmonary vein.

Jaeger K, Tveito A NPJ Syst Biol Appl. 2024; 10(1):79.

PMID: 39043674 PMC: 11266599. DOI: 10.1038/s41540-024-00406-9.


References
1.
Golowasch J, Abbott L, Marder E . Activity-dependent regulation of potassium currents in an identified neuron of the stomatogastric ganglion of the crab Cancer borealis. J Neurosci. 1999; 19(20):RC33. PMC: 6782763. View

2.
Yi T, Huang Y, Simon M, Doyle J . Robust perfect adaptation in bacterial chemotaxis through integral feedback control. Proc Natl Acad Sci U S A. 2000; 97(9):4649-53. PMC: 18287. DOI: 10.1073/pnas.97.9.4649. View

3.
Marder E, Eisen J . Transmitter identification of pyloric neurons: electrically coupled neurons use different transmitters. J Neurophysiol. 1984; 51(6):1345-61. DOI: 10.1152/jn.1984.51.6.1345. View

4.
Stemmler M, Koch C . How voltage-dependent conductances can adapt to maximize the information encoded by neuronal firing rate. Nat Neurosci. 1999; 2(6):521-7. DOI: 10.1038/9173. View

5.
Taylor A, Hickey T, Prinz A, Marder E . Structure and visualization of high-dimensional conductance spaces. J Neurophysiol. 2006; 96(2):891-905. DOI: 10.1152/jn.00367.2006. View