Hepatic, Placental, and Fetal Trace Elements Following Molybdenum Supplementation During Gestation
Overview
Authors
Affiliations
The effect of dietary Mo (Na2Mo(4)2H2O) added to drinking water at levels of 0, 5, 10, 50, or 100 mg on hepatic (gestating dams), placental, and fetal Mo, Cu, Zn, and Fe contents of Sprague-Dawley rats was studied. These elements were determined by a polarographic catalytic procedure for Mo and by atomic absorption spectrophotometry for Cu, Fe, and Zn. Hepatic Mo increased two to sixfold (5-100 mg Mo). There was a 1.5-fold increase in hepatic Cu, significant only at the 50 to 100 mg Mo/L treatment levels. Although the hepatic Fe content of the gestating rats significantly increased with Mo supplementation, the extent of the increase appeared to be influenced by the litter size, fetal weights, and the degree of fetal resorption. Zinc values did not differ at any of the treatment levels. Placental Mo increased 3-76-fold, Cu one to threefold. No differences were observed in placenta Fe or Zn. Fetal Mo increased two to six-fold (10-100 mg/L) and Cu increased one to fivefold. There were no differences in the Fe and Zn content although both of these elements appeared to decline as the level of supplemental Mo increased. Significant correlations were also observed between hepatic, placental, and fetal Mo, Cu, Fe, and Zn. These results suggest that changes in trace mineral status in gestation, owing to high Mo intake, do occur and such occurrences are also reflected in the fetus.
McCarthy K, Menezes A, Kassetas C, Baumgaertner F, Kirsch J, Dorsam S Animals (Basel). 2022; 12(15).
PMID: 35953914 PMC: 9367577. DOI: 10.3390/ani12151925.