» Articles » PMID: 24808894

Membrane Interaction of Retroviral Gag Proteins

Overview
Journal Front Microbiol
Specialty Microbiology
Date 2014 May 9
PMID 24808894
Citations 43
Authors
Affiliations
Soon will be listed here.
Abstract

Assembly of an infectious retroviral particle relies on multimerization of the Gag polyprotein at the inner leaflet of the plasma membrane. The three domains of Gag common to all retroviruses - MA, CA, and NC - provide the signals for membrane binding, assembly, and viral RNA packaging, respectively. These signals do not function independently of one another. For example, Gag multimerization enhances membrane binding and is more efficient when NC is interacting with RNA. MA binding to the plasma membrane is governed by several principles, including electrostatics, recognition of specific lipid head groups, hydrophobic interactions, and membrane order. HIV-1 uses many of these principles while Rous sarcoma virus (RSV) appears to use fewer. This review describes the principles that govern Gag interactions with membranes, focusing on RSV and HIV-1 Gag. The review also defines lipid and membrane behavior, and discusses the complexities in determining how lipid and membrane behavior impact Gag membrane binding.

Citing Articles

Direct lipid interactions control SARS-CoV-2 M protein conformational dynamics and virus assembly.

Dutta M, Dolan K, Amiar S, Bass E, Sultana R, Voth G bioRxiv. 2024; .

PMID: 39574576 PMC: 11580925. DOI: 10.1101/2024.11.04.620124.


Cooperative Membrane Binding of HIV-1 Matrix Proteins.

Banerjee P, Monje-Galvan V, Voth G J Phys Chem B. 2024; 128(11):2595-2606.

PMID: 38477117 PMC: 10962350. DOI: 10.1021/acs.jpcb.3c06222.


Molecular dynamics simulations of HIV-1 matrix-membrane interactions at different stages of viral maturation.

Banerjee P, Qu K, Briggs J, Voth G Biophys J. 2024; 123(3):389-406.

PMID: 38196190 PMC: 10870173. DOI: 10.1016/j.bpj.2024.01.006.


Probing the interactions of the HIV-1 matrix protein-derived polybasic region with lipid bilayers: insights from AFM imaging and force spectroscopy.

Aryal C, Pan J Eur Biophys J. 2024; 53(1-2):57-67.

PMID: 38172352 DOI: 10.1007/s00249-023-01697-2.


Conformational transitions of the HIV-1 Gag polyprotein upon multimerization and gRNA binding.

Banerjee P, Voth G Biophys J. 2023; 123(1):42-56.

PMID: 37978800 PMC: 10808027. DOI: 10.1016/j.bpj.2023.11.017.


References
1.
Shkriabai N, Datta S, Zhao Z, Hess S, Rein A, Kvaratskhelia M . Interactions of HIV-1 Gag with assembly cofactors. Biochemistry. 2006; 45(13):4077-83. DOI: 10.1021/bi052308e. View

2.
Lingappa J, Hill R, Wong M, Hegde R . A multistep, ATP-dependent pathway for assembly of human immunodeficiency virus capsids in a cell-free system. J Cell Biol. 1997; 136(3):567-81. PMC: 2134302. DOI: 10.1083/jcb.136.3.567. View

3.
Hogue I, Hoppe A, Ono A . Quantitative fluorescence resonance energy transfer microscopy analysis of the human immunodeficiency virus type 1 Gag-Gag interaction: relative contributions of the CA and NC domains and membrane binding. J Virol. 2009; 83(14):7322-36. PMC: 2704781. DOI: 10.1128/JVI.02545-08. View

4.
Ono A, Orenstein J, Freed E . Role of the Gag matrix domain in targeting human immunodeficiency virus type 1 assembly. J Virol. 2000; 74(6):2855-66. PMC: 111776. DOI: 10.1128/jvi.74.6.2855-2866.2000. View

5.
Silvius J, Bhagatji P, Leventis R, Terrone D . K-ras4B and prenylated proteins lacking "second signals" associate dynamically with cellular membranes. Mol Biol Cell. 2005; 17(1):192-202. PMC: 1345658. DOI: 10.1091/mbc.e05-05-0408. View