» Articles » PMID: 24803963

DNA Translocation Through Short Nanofluidic Channels Under Asymmetric Pulsed Electric Field

Overview
Date 2014 May 8
PMID 24803963
Citations 5
Authors
Affiliations
Soon will be listed here.
Abstract

Investigation of single molecule DNA dynamics in confined environments has led to important applications in DNA analysis, separation, and sequencing. Here, we studied the electrophoretic transport of DNA molecules through nanochannels shorter than the DNA contour length and calculated the associated translocation time curves. We found that the longer T4 DNA molecules required a longer time to traverse a fixed length nanochannel than shorter λ DNA molecules and that the translocation time decreased with increasing electric field which agreed with theoretical predictions. We applied this knowledge to design an asymmetric electric pulse and demonstrate the different responses of λ and T4 DNA to the pulses. We used Brownian dynamics simulations to corroborate our experimental results on DNA translocation behaviour. This work contributes to the fundamental understanding of polymer transport through nanochannels and may help in designing better separation techniques in the future.

Citing Articles

In Situ Electroporation on PERFECT Filter for High-Efficiency and High-Viability Tumor Cell Labeling.

Hun T, Zhang Y, Xu Q, Huang D, Wang Q, Li Z Micromachines (Basel). 2022; 13(5).

PMID: 35630139 PMC: 9146625. DOI: 10.3390/mi13050672.


Flow of DNA in micro/nanofluidics: From fundamentals to applications.

Rems L, Kawale D, Lee L, Boukany P Biomicrofluidics. 2016; 10(4):043403.

PMID: 27493701 PMC: 4958106. DOI: 10.1063/1.4958719.


Analysis of single nucleic acid molecules in micro- and nano-fluidics.

Friedrich S, Zec H, Wang T Lab Chip. 2016; 16(5):790-811.

PMID: 26818700 PMC: 4767527. DOI: 10.1039/c5lc01294e.


Study of flow rate induced measurement error in flow-through nano-hole plasmonic sensor.

Tu L, Huang L, Wang T, Wang W Biomicrofluidics. 2015; 9(6):064111.

PMID: 26649131 PMC: 4662672. DOI: 10.1063/1.4936863.


Fundamental studies of nanofluidics: nanopores, nanochannels, and nanopipets.

Haywood D, Saha-Shah A, Baker L, Jacobson S Anal Chem. 2014; 87(1):172-87.

PMID: 25405581 PMC: 4287834. DOI: 10.1021/ac504180h.

References
1.
Meller A, Nivon L, Branton D . Voltage-driven DNA translocations through a nanopore. Phys Rev Lett. 2001; 86(15):3435-8. DOI: 10.1103/PhysRevLett.86.3435. View

2.
Wang Y, Tree D, Dorfman K . Simulation of DNA Extension in Nanochannels. Macromolecules. 2011; 44(16):6594-6604. PMC: 3158571. DOI: 10.1021/ma201277e. View

3.
Aksimentiev A, Heng J, Timp G, Schulten K . Microscopic Kinetics of DNA Translocation through synthetic nanopores. Biophys J. 2004; 87(3):2086-97. PMC: 1304610. DOI: 10.1529/biophysj.104.042960. View

4.
Kasianowicz J, Brandin E, Branton D, Deamer D . Characterization of individual polynucleotide molecules using a membrane channel. Proc Natl Acad Sci U S A. 1996; 93(24):13770-3. PMC: 19421. DOI: 10.1073/pnas.93.24.13770. View

5.
Reisner W, Morton K, Riehn R, Wang Y, Yu Z, Rosen M . Statics and dynamics of single DNA molecules confined in nanochannels. Phys Rev Lett. 2005; 94(19):196101. DOI: 10.1103/PhysRevLett.94.196101. View