» Articles » PMID: 24761972

Microfluidic Bead Suspension Hopper

Overview
Journal Anal Chem
Specialty Chemistry
Date 2014 Apr 26
PMID 24761972
Citations 14
Authors
Affiliations
Soon will be listed here.
Abstract

Many high-throughput analytical platforms, from next-generation DNA sequencing to drug discovery, rely on beads as carriers of molecular diversity. Microfluidic systems are ideally suited to handle and analyze such bead libraries with high precision and at minute volume scales; however, the challenge of introducing bead suspensions into devices before they sediment usually confounds microfluidic handling and analysis. We developed a bead suspension hopper that exploits sedimentation to load beads into a microfluidic droplet generator. A suspension hopper continuously delivered synthesis resin beads (17 μm diameter, 112,000 over 2.67 h) functionalized with a photolabile linker and pepstatin A into picoliter-scale droplets of an HIV-1 protease activity assay to model ultraminiaturized compound screening. Likewise, trypsinogen template DNA-coated magnetic beads (2.8 μm diameter, 176,000 over 5.5 h) were loaded into droplets of an in vitro transcription/translation system to model a protein evolution experiment. The suspension hopper should effectively remove any barriers to using suspensions as sample inputs, paving the way for microfluidic automation to replace robotic library distribution.

Citing Articles

Offsetting Dense Particle Sedimentation in Microfluidic Systems.

Anyaduba T, Rodriguez-Manzano J Micromachines (Basel). 2024; 15(9).

PMID: 39337723 PMC: 11434299. DOI: 10.3390/mi15091063.


Hydrogel-Encapsulated Beads Enable Proximity-Driven Encoded Library Synthesis and Screening.

Cavett V, Chan A, Cunningham C, Paegel B ACS Cent Sci. 2023; 9(8):1603-1610.

PMID: 37637732 PMC: 10451030. DOI: 10.1021/acscentsci.3c00316.


Shaking Device for Homogeneous Dispersion of Magnetic Beads in Droplet Microfluidics.

Poles M, Meggiolaro A, Cremaschini S, Marinello F, Filippi D, Pierno M Sensors (Basel). 2023; 23(12).

PMID: 37420565 PMC: 10304097. DOI: 10.3390/s23125399.


Translating the Genome into Drugs.

Dixit A, Barhoosh H, Paegel B Acc Chem Res. 2023; 56(4):489-499.

PMID: 36757774 PMC: 9948288. DOI: 10.1021/acs.accounts.2c00791.


Picoliter Droplet Generation and Dense Bead-in-Droplet Encapsulation via Microfluidic Devices Fabricated via 3D Printed Molds.

Anyaduba T, Otoo J, Schlappi T Micromachines (Basel). 2022; 13(11).

PMID: 36363966 PMC: 9695966. DOI: 10.3390/mi13111946.


References
1.
Zhang , Chung , OLDENBURG . A Simple Statistical Parameter for Use in Evaluation and Validation of High Throughput Screening Assays. J Biomol Screen. 2000; 4(2):67-73. DOI: 10.1177/108705719900400206. View

2.
Upert G, Merten C, Wennemers H . Nanoliter plates--versatile tools for the screening of split-and-mix libraries on-bead and off-bead. Chem Commun (Camb). 2010; 46(13):2209-11. DOI: 10.1039/b927017e. View

3.
Hertzberg R, Pope A . High-throughput screening: new technology for the 21st century. Curr Opin Chem Biol. 2000; 4(4):445-51. DOI: 10.1016/s1367-5931(00)00110-1. View

4.
Mazutis L, Araghi A, Miller O, Baret J, Frenz L, Janoshazi A . Droplet-based microfluidic systems for high-throughput single DNA molecule isothermal amplification and analysis. Anal Chem. 2009; 81(12):4813-21. DOI: 10.1021/ac900403z. View

5.
Eastburn D, Sciambi A, Abate A . Ultrahigh-throughput Mammalian single-cell reverse-transcriptase polymerase chain reaction in microfluidic drops. Anal Chem. 2013; 85(16):8016-21. DOI: 10.1021/ac402057q. View