Drigas A, Sideraki A
Sensors (Basel). 2024; 24(17).
PMID: 39275636
PMC: 11397861.
DOI: 10.3390/s24175725.
Rueckauer B, van Gerven M
Front Neurosci. 2023; 17:1141884.
PMID: 36968496
PMC: 10030734.
DOI: 10.3389/fnins.2023.1141884.
Krukiewicz K, Fernandez J, Skorupa M, Wieclawska D, Poudel A, Sarasua J
BMC Biomed Eng. 2020; 1:9.
PMID: 32903306
PMC: 7422568.
DOI: 10.1186/s42490-019-0010-3.
Herff C, Krusienski D, Kubben P
Front Neurosci. 2020; 14:123.
PMID: 32174810
PMC: 7056827.
DOI: 10.3389/fnins.2020.00123.
Caldwell D, Ojemann J, Rao R
Front Neurosci. 2019; 13:804.
PMID: 31440127
PMC: 6692891.
DOI: 10.3389/fnins.2019.00804.
Learning active sensing strategies using a sensory brain-machine interface.
Richardson A, Ghenbot Y, Liu X, Hao H, Rinehart C, DeLuccia S
Proc Natl Acad Sci U S A. 2019; 116(35):17509-17514.
PMID: 31409713
PMC: 6717311.
DOI: 10.1073/pnas.1909953116.
Towards neural co-processors for the brain: combining decoding and encoding in brain-computer interfaces.
Rao R
Curr Opin Neurobiol. 2019; 55:142-151.
PMID: 30954862
PMC: 6860027.
DOI: 10.1016/j.conb.2019.03.008.
A closed-loop, music-based brain-computer interface for emotion mediation.
Ehrlich S, Agres K, Guan C, Cheng G
PLoS One. 2019; 14(3):e0213516.
PMID: 30883569
PMC: 6422328.
DOI: 10.1371/journal.pone.0213516.
Parsing learning in networks using brain-machine interfaces.
Orsborn A, Pesaran B
Curr Opin Neurobiol. 2017; 46:76-83.
PMID: 28843838
PMC: 5660637.
DOI: 10.1016/j.conb.2017.08.002.
State-Dependent Decoding Algorithms Improve the Performance of a Bidirectional BMI in Anesthetized Rats.
De Feo V, Boi F, Safaai H, Onken A, Panzeri S, Vato A
Front Neurosci. 2017; 11:269.
PMID: 28620273
PMC: 5449465.
DOI: 10.3389/fnins.2017.00269.
A Bidirectional Brain-Machine Interface Featuring a Neuromorphic Hardware Decoder.
Boi F, Moraitis T, De Feo V, Diotalevi F, Bartolozzi C, Indiveri G
Front Neurosci. 2016; 10:563.
PMID: 28018162
PMC: 5145890.
DOI: 10.3389/fnins.2016.00563.
From Nose to Brain: Un-Sensed Electrical Currents Applied in the Nose Alter Activity in Deep Brain Structures.
Weiss T, Shushan S, Ravia A, Hahamy A, Secundo L, Weissbrod A
Cereb Cortex. 2016; 26(11):4180-4191.
PMID: 27591145
PMC: 5066827.
DOI: 10.1093/cercor/bhw222.
Cortico-Cortical Interactions during Acquisition and Use of a Neuroprosthetic Skill.
Wander J, Sarma D, Johnson L, Fetz E, Rao R, Ojemann J
PLoS Comput Biol. 2016; 12(8):e1004931.
PMID: 27541829
PMC: 4991818.
DOI: 10.1371/journal.pcbi.1004931.
Intracortical Brain-Machine Interfaces Advance Sensorimotor Neuroscience.
Schroeder K, Chestek C
Front Neurosci. 2016; 10:291.
PMID: 27445663
PMC: 4923184.
DOI: 10.3389/fnins.2016.00291.
Brain-computer interfaces for dissecting cognitive processes underlying sensorimotor control.
Golub M, Chase S, Batista A, Yu B
Curr Opin Neurobiol. 2016; 37:53-58.
PMID: 26796293
PMC: 4860084.
DOI: 10.1016/j.conb.2015.12.005.
Computing Arm Movements with a Monkey Brainet.
Ramakrishnan A, Ifft P, Pais-Vieira M, Byun Y, Zhuang K, Lebedev M
Sci Rep. 2015; 5:10767.
PMID: 26158523
PMC: 4497496.
DOI: 10.1038/srep10767.
Comparison of subdural and subgaleal recordings of cortical high-gamma activity in humans.
Olson J, Wander J, Johnson L, Sarma D, Weaver K, Novotny E
Clin Neurophysiol. 2015; 127(1):277-284.
PMID: 25907415
PMC: 4600028.
DOI: 10.1016/j.clinph.2015.03.014.
Neural correlates of learning in an electrocorticographic motor-imagery brain-computer interface.
Blakely T, Olson J, Miller K, Rao R, Ojemann J
Brain Comput Interfaces (Abingdon). 2015; 1(3-4):147-157.
PMID: 25599079
PMC: 4295512.
DOI: 10.1080/2326263X.2014.954183.
Shedding light on learning.
Yu B, Chase S
Nat Neurosci. 2014; 17(6):746-7.
PMID: 24866035
DOI: 10.1038/nn.3723.
The receptive field is dead. Long live the receptive field?.
Fairhall A
Curr Opin Neurobiol. 2014; 25:ix-xii.
PMID: 24618227
PMC: 4043224.
DOI: 10.1016/j.conb.2014.02.001.